

# Multi-angle Imaging SpectroRadiometer (MISR) Calibration and Test Program

Carol J. Bruegge Jet Propulsion Laboratory California Institute of Technology

A presentation to the National Science Foundation November 4, 1998

# ACKNOWLEDGMENTS



David Diner Terry Reilly Valerie Duval Carlos Jorquera Nadine Chrien

Barbara Gaitley Ghobie Saghri Daniel Preston Teré Smith Eric Hochberg Robert Korechoff David Haner Brian Chafin

MISR/ AirMISR Principal Investigator **Project Manager Calibration Engineer** Photodiode assembly and test Radiometric model. polarization, BRF analysis Radiometric and spectral data analysis Radiometric and spectral facility design Filters/ flight camera testing Integration and test **Optical Characterization chamber** MTF, focus, special studies Spectralon BRF testing In-flight data processing software





### The MISR/ AirMISR instruments

#### **Detector-based calibration**

Manufacture of the laboratory and flight standards Traceability to Système International Units

NIST verification (EOS round-robin experiment)

### Test program

"Optical Characterization Chamber": MTF, PSF, focus

"Radiometric Characterization Chamber": Radiometric, Spectral Polarization Instrument level tests: image verification, camera pointing, data fidelity

### **Special studies**

Out-of-band spectral response, focal-plane scattering, offset video **In-flight calibration** 

On-board calibrator, vicarious calibration

Reconciling multiple calibrations

### Data products

The Ancillary Radiometric Product

### PUBLICATIONS LIST (SELECT PAPERS)



#### Complete publication list is available via the Internet

http://www-misr.jpl.nasa.gov ==> Publications

### **IEEE'98 EOS Special issue**

Bruegge, et. al. See Calibration Overview.

- Diner, D.J., J.C. Beckert, T.H. Reilly, C.J. Bruegge, J.E. Conel, R. Kahn, J.V. Martonchik, T.P. Ackerman, R. Davies, S.A.W. Gerstl, H.R. Gordon, J-P. Muller, R. Myneni, R.J. Sellers, B. Pinty, and M.M. Verstraete (1998). Multiangle Imaging SpectroRadiometer (MISR) description and experiment overview. IEEE Trans. Geosci. Rem. Sens., Vol. 36, 1072-1087.
- D.J. Diner, L.M. Barge, C.J. Bruegge, T.G. Chrien, J.E. Conel, M.L. Eastwood, J.D. Garcia, M.A. Hernandez, C.G. Kurzweil, W.C. Ledeboer, N.D. Pignatano, C.M. Sarture, and B.G. Smith (1998). The Airborne Multi-angle SpectroRadiometer (AirMISR): instrument description and first results. IEEE Trans. Geosci. Rem. Sens., Vol. 36, pp. 1339-1349.
- Martonchik, J.V., D.J. Diner, R. Kahn, T.P. Ackerman, M.M. Verstraete, B. Pinty, and H.R. Gordon (1998). Techniques for the retrieval of aerosol properties over land and ocean using multi-angle imaging. IEEE Trans. Geosci. Rem. Sens., Vol. 36, pp. 1212-1227.

### **Calibration overview**

- Bruegge, C.J., V.G. Duval, N.L. Chrien, R.P. Korechoff, B.J. Gaitley, and E.B. Hochberg (1998). MISR prelaunch instrument calibration and characterization results. IEEE Trans. Geosci. Rem. Sens., Vol. 36, pp. 1186-1198.
- Bruegge, C.J., D.J. Diner, and V.G. Duval (1996). The MISR calibration program. J. of Atmos. and Oceanic Tech., Vol. **13** (2), 286-299.
- Bruegge, C.J., V.G. Duval, N.L. Chrien, and D.J. Diner (1993). Calibration Plans for the Multi-angle Imaging SpectroRadiometer (MISR). Metrologia, **30** (4), 213-221.
- Chrien, N.C.L., C.J. Bruegge, and B.R. Barkstrom (1993). Estimation of calibration uncertainties for the Multi-angle Imaging SpectroRadiometer (MISR) via fidelity intervals. In Sensor Systems for the Early Earth Observing System Platforms, Proc. SPIE 1939, April, 114-125.

# PUBLICATIONS, CONT.



#### Photodiodes

- Jorquera, C., C.J. Bruegge, V.G. Duval (1992). Evaluation of high quantum efficiency silicon photodiodes for calibration in the 400 nm to 900 nm spectral region. In Infrared Technology XVIII. Proc. SPIE 1762, 135-144.
- Jorquera, C.R., V.G. Ford, V.G. Duval, and C.J. Bruegge (1995). State of the art radiometer standards for NASA's Earth Observing System. Aerospace Applications Conference, 5-10Feb, Snowmass, CO.
- Jorquera, C.R., R. Korde, V.G. Ford, V.G. Duval, C.J. Bruegge (1994). Design of new photodiode standards for use in the MISR inflight calibrator. IGARSS '94, 8-12Aug, Pasadena, Ca.

#### **Diffuse panel studies**

- T. R. O'Brian, E. A. Early, B. C. Johnson, J. J. Butler, C. J. Bruegge, S. Biggar, P. Spyak, and M. Pavlov, "Initial results of the bidirectional reflectance characterization round-robin in support of EOS AM-1," Conference issue: New Developments and Applications in Optical Radiometry (NEWRAD '97), *Metrologia*, in preparation.
- Bruegge, C.J., A.E. Stiegman, R.A. Rainen, A.W. Springsteen (1993). Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors. Opt. Eng. **32**(4), 805-814.
- Stiegman, A.E., C.J. Bruegge, A.W. Springsteen (1993). Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material. Opt. Eng. **32**(4), 799-804.
- Barnes, P.Y., E.A. Early, B. Johnson, J.J. Butler, C.J. Bruegge, S.F. Biggar, P.R. Spyak, and M. Pavlov (1998). Intercomparison of reflectance measurements. In SPIE 3425, Optical Diagnostic methods for inorganic transmissive materials, San Diego, 20-21 July.
- Flasse, S.P., M.M. Verstraete, B. Pinty, and C.J. Bruegge (1993). Modeling Spectralon's bidirectional reflectance for in-flight calibration of Earth-orbiting sensors. In Recent Advances in Sensors, Radiometric Calibration, and Processing of Remotely Sensed Data, Proc. SPIE 1938, April, 100-108.

#### In-flight calibration

C.J. Bruegge, N. L. Chrien, R. A. Kahn, J. V. Martonchik, David Diner (1998). Radiometric Uncertainty Tabulations for the Retrieval of MISR Aerosol Products. Conference issue: New Developments and Applications in Optical Radiometry (NEWRAD '97), *Metrologia*..

## PUBLICATIONS, CONT.



Chrien, N.L. and C.J. Bruegge (1996). Out-of-band spectral correction algorithm for the Multi-angle Imaging SpectroRadiometer. In *Earth Observing System.* Proc. SPIE **2820**, Denver, Co, 5-9 August.

#### **Testing reports**

- C.J. Bruegge and D.J. Diner, "Instrument verification tests on the Multi-angle Imaging SpectroRadiometer (MISR)," in *Earth Observing Systems II*, SPIE **3117**, San Diego, CA, 28-29 July 1997.
- Bruegge, C.J., N.L. Chrien, B.J. Gaitley, and R.P. Korechoff (1996). Preflight performance testing of the Multi-angle Imaging SpectroRadiometer cameras. *In Satellite Remote Sensing III*, Proc. SPIE **2957**, Taormina, Italy, 23-26 September 1996.
- Bruegge, C.J., V.G. Duval, N.L. Chrien, and R. P. Korechoff (1995). MISR instrument development and test status. In *Advanced and Next-Generation Satellites*. Proc. EUROPTO/ SPIE **2538**, 92-103, Paris, France, 25-28 September.
- Hochberg, E.B., and N.C. L. Chrien (1996). Lloyds mirror for MTF testing of MISR CCD. In *Optical Spectroscopic Techniques and Instrumentation for Atmospheric Space Research* II. Proc. SPIE **2830**, Denver, CO, 5-9 August.
- Hochberg, E.B., M.L. White, R.P. Korechoff, C.A. Sepulveda (1996). Optical testing of MISR lenses and cameras. In *Optical Spectroscopic Techniques and Instrumentation for Atmospheric Space Research* II. Proc. SPIE, VOL. 2830 Denver, CO, 5-9 August.
- Korechoff, R.P, D.J. Diner, D.J. Preston, C.J. Bruegge (1995). In Advanced and Next-Generation Satellites. Spectroradiometer focalplane design considerations: lessons learned from MISR camera testing. EUROPTO/ SPIE Vol. 2538, pp. 104-116, 25-28 September.
- Korechoff, R., D. Kirby, E. Hochberg, C. Sepulveda, and V. Jovanovic (1996). Distortion calibration of the MISR linear detectors. In *Earth Observing System*. Proc. SPIE **2820**, Denver, Co, 5-9 August.

### IFRCC/ Level 1B1

Bruegge, C.J., R.M. Woodhouse, D.J. Diner (1996). In-flight radiometric calibration plans for the Earth Observing System Multi-angle Imaging SpectroRadiometer. IEEE/IGARSS, Paper No. 96.1028, Lincoln, Nebraska, 27-31 May.

## MISR OVERVIEW



Platform: Terra (EOS-AM1)

### Launch: No earlier than August 27, 1999

- recent TITAN IV/CENTAUR and DELTA III launch failures may cause a delay Other EOS-AM1 instruments: MODIS, CERES, ASTER, and MOPITT



#### MISR capabilities: Multi-angle global view of earth

- 9 cameras pointing nadir to  $\pm 70^\circ$
- 4 spectral bands 446, 558, 672, and 866 nm
- global coverage every 9 days
- on-board pixel averaging (275 m 1.1 km)
- average data rate 3.3 Mb/sec





# **DEVELOPMENT TIMELINE**



- Proposal submitted
- Preliminary design review (PDR)
  - Calibration peer review
  - Preflight calibration plans
- Critical design review (CDR)
  - Calibration peer review II
- Calibrate cameras
  - Engineering model
  - Calibrate flight cameras (10)
- Instrument thermal vacuum testing
- MISR arrives at spacecraft integrator
- Develop in-flight calibration processing capability
- Original launch date

July 15, 1988 May 25, 1993 May 23, 1993 January 10, 1994 December 6, 1994 March 27-28, 1995

August 1994-August 1995 August 1995-August 1996 **December 1996 May 26, 1997 1998** 

June 1998

## AIRMISR INSTRUMENT HERITAGE



- Original proposal "Low-cost Airborne MISR Simulator" was submitted to the EOS Project Scientist (Dr. Michael King, GSFC) on 10 Nov 1995
- Objectives for AirMISR
  - collect MISR-like data sets in support of the validation of MISR products
  - underfly EOS-AM1 MISR to verify its radiometric calibration
  - enable scientific research utilizing high quality, well-calibrated multi-angle imaging data
  - enable the exploration of measurement enhancements (room reserved in instrument reserved as technology testbed for future cameras)

### • MISR inheritance

- implementation features a single pushbroom camera, gimbaled to nine viewangle positions during a 15 minute data acquisition run
- camera comprised of a MISR brassboard lens ("A" lens design, shortest focal length), and MISR engineering model focal plane
- spectral bands at 446, 558, 672, and 866 nm (widths of 20 40 nm)
- spectral, radiometric, and point-spread-function (PSF) response measured using MISR-developed laboratories and analysis procedures









| Parameter                          | MISR                                             | AirMISR                             |
|------------------------------------|--------------------------------------------------|-------------------------------------|
| Absolute<br>uncertainty            | 3% (1σ)                                          | 3% (1 <b>0</b> )                    |
| Number of<br>detector<br>elements  | 9 camera x 4<br>bands x 1504<br>pixels (~53,000) | 4 bands x 1504<br>pixels (~6000)    |
| Worst detector<br>elements         | 10% < response<br>loss < 1%                      | 40%< response<br>loss               |
| Number of<br>detector<br>anomalies | ~12                                              | ~20 in blue<br>~ 20 in green        |
| SNR                                | > 900                                            | same, excluding<br>anomalour pixels |
| Spectral out-of-<br>band           | <2%                                              | 4% in Band 3                        |

# **CALIBRATION PLAN**





## **JPL** MISR REQUIRES RADIOMETRIC CALIBRATION AND STABILITY



### **SCIENCE REQUIREMENTS (68% CONFIDENCE)**

- Absolute radiometric uncertainty:  $\pm$ 3% at signal  $\rho_{eq}$ =100%
  - Required for accurate albedo and aerosol retrievals, change detection
- Relative angle-to-angle radiometric uncertainty:  $\pm 1\%$  at signal  $\rho_{\text{eq}}\text{=}100\%$ 
  - Required for accurate determination of angular signatures
- Stability (maximum change): 0.5%/ 1 month; 2%/ 1 year at signal  $\rho_{eq}$ =100%
  - Required to maintain radiometric accuracy during intervals between calibrations

### **RAMIFICATIONS FOR INSTRUMENT**

- High accuracy on-board calibrator
- Detector-based calibration using high quantum efficiency (HQE) and radiation resistant (PIN architecture) diodes
- High stability detectors, filters, and lenses
- Polarization insensitivity
- High signal-to-noise ratio

## MISR REQUIRES SPECTRAL UNIFORMITY AND STABILITY



| REQUIREMENT | RATIONALE                                                                                                                                                        |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accuracy    | <ul> <li>Optimizes science</li> <li>Avoids solar Fraunhofer lines and atmospheric water absorption</li> <li>Provides synergism with other instruments</li> </ul> |
| Knowledge   | - Necessary to avoid radiometric error                                                                                                                           |
| Uniformity  | <ul> <li>Minimizes complexity of science algorithms</li> <li>Achieves consistent retrieval across the scene</li> </ul>                                           |
| Stability   | <ul> <li>Eliminates need for on-board calibration within instrument</li> <li>Achieves consistent retrieval with time</li> </ul>                                  |

### **RAMIFICATIONS FOR INSTRUMENT**

- Interference filter and blocker designs to provide high out-of-band rejection
- High stability filter coatings (Ion Assisted Deposition technology) to avoid need for on-board spectral calibrator
- Gaussian band profiles to provide polarization insensitivity

# DETECTOR-BASED CALIBRATION



- MISR has stringent calibration requirements
  - Remote sensing systems flown prior to 1990 had very lax calibration requirements
  - Landsat program did not provide radiance data products
  - SPOT requires absolute calibration to only 10%
  - Conversely, MISR has very stringent (3%) absolute calibration requirements
  - Detector-based calibration elected to meet this challenge
  - Literature reports accuracies of 0.5%, using filtered trap detectors
- Building flight detectors no easy task
  - assembly hermetically sealed to allow focal plane stability (protected from humidity, contaminants, filter shifts)
  - light-trap manufactured from using ceramic subcarriers
  - precision apertures manufactured using photolithography techniques (1  $\mu m$  tolerance)
  - radiation testing required, simulating on-orbit environment
  - radiometric response verified by consistency checks with independent devices (laboratory standards and wedge standards)



## **ON-BOARD CALIBRATOR**





## IN-FLIGHT RADIOMETRIC CALIBRATION



### **On-Board Calibrator (OBC)**

- High quantum efficiency (HQE) diodes
  - Detector-based radiometric standard for the instrument
  - Configured in light-trap arrangement to give near 100% QE
- Radiation resistant PIN diodes
  - Secondary detector standard (longer lifetime than the HQEs)
- Deployable Spectralon diffuse panels
  - Relative BRF needed to transfer diode measurements into camera view angles
  - Absolute reflectance knowledge unnecessary (slow degradation permissable)
- Mechanized goniometer diode (G-PIN)
  - Verifies BRF stability of diffuse panels

### **Radiometric calibration**

- Acquire monthly OBC data (6 minute interval at each pole)
- Conduct semi-annual overflight field campaigns
- Calibration coefficients computed from a time trend analysis considering the preflight, OBC, and overflight measurements



### Panel design

- Panel difficult to frame, as Spectralon grows 0.29" beyond aluminum tray between survival temperatures -65 to 80°C.
- Panel design has feet protruding into frame to allow thermal growth without distortion and survive launch loads without yielding (yields at 200 psi).
- Spectralon can only be machined to a tolerance of 0.005". Tray will be customized if necessary upon Spectralon delivery.

### Handling specifications

- During manufacture all surfaces to contact resin or Spectralon to be wiped with 200 proof reagent grade Ethyl Alcohol.
- During transport within Labsphere or to JPL material stored in dry nitrogen purged aluminum transportation container with 9 integral witness samples. Spectralon will be housed in EM or PF container for BRDF testing.
- Following machining material baked out at 10-6 torr, 90°C for 48 hours.

## SPECTRALON FLIGHT QUALIFICATION



| Test                                                                                                 | Purpose                                                                                                                          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Charge arcing evaluation                                                                             | Frame/ housing configuration versus discharge damage (done)                                                                      |
| Process verification tests                                                                           | Cleaning and handling procedures (done)<br>BRDF study at in-orbit geometries<br>Polarization<br>Solar absorptance/ emittance     |
| Environmental exposure tests<br>BRDF data will be acquired before and after to<br>evaluate stability | UV/ vacuum (repeat)<br>Humidity<br>Thermal vacuum cycling<br>Charged particle, proton (done)<br>Atomic oxygen (analyses planned) |
| Mechanical and physical property testing                                                             | Tension strength<br>Compression strength<br>Modulus<br>Deformation under load<br>Flexural                                        |
| Vibration testing                                                                                    | Launch vibration loads with particulate contamination<br>evaluation                                                              |

### SPECTRALON HEMISPHERIC BRF









# EOS CALIBRATION PANEL



#### • Membership

- EOS project office lead
- NIST representatives (Carol Johnson, Joe Rice)
- Calibration scientist for each of 5 instrument teams
- Calibration specialists:

Vicarious calibration, Phil Slater, Univ. of Arizona Lunar studies, Hugh Kieffer, US Geological Survey

- Workshops (1 or 2 times a year)
- Peer reviews (2 reviews per instrument)
- Round-robin experiments
  - Radiometric (integrating sphere output verification)
  - Diffuse panel bi-directional reflectance function comparison



- EOS contractual agreement reads that MISR calibration must be NIST traceable
- In-house design does not come with a pedigree traceable to standards held at NIST
- MISR detector standards are traceable to the Système International (SI) radiance scale via traceable protocols of measuring current, voltage, and distances
- The internal quantum efficiency of these devices is well understood in the literature
- Verifications of our scale were provided by comparison to NIST-traceable lamps, and participation in EOS/ NIST sponsored round-robin experiments

## AUGUST 1994 ROUND ROBIN



• Various transfer radiometers compared MISR integrating sphere output. Results give confidence in ability to achieve  $3\%(1\sigma)$  absolute requirement.

|            | Wavelength (nm) |      |       |
|------------|-----------------|------|-------|
| Radiometer | 550             | 650  | 666   |
| MISR       | 0.4%            |      |       |
| UofA       | -1.%            |      | -0.8% |
| NRLM       |                 | 0.9% |       |

• Additionally, filter transmittance was measured by several instruments.MISR Cary establishes radiometric scale of Laboratory Standards.

|                           | Wavelength (nm) |          |          |
|---------------------------|-----------------|----------|----------|
| Filter $\lambda_c$ ,      | 500             | 687      | 748      |
| MISR Cary                 | baseline        | baseline | baseline |
| JPL Beckman               | +1.3%           | -0.1%    | -1.7%    |
| UofA Optronics            |                 | +5.0%    | +11.0%   |
| GSFC Perkins and<br>Elmer | +1.2%           |          |          |



### **JPL** NIST VS JPL BRDF MEASUREMENTS SPECTRALON SAMPLE, 632.8 NM



MISR



## PREFLIGHT CALIBRATION TEST FLOW





# **HIGH BAY FACILITY**



50x100 ft layout x 30 ft height Class 10,000 cleanroom

#### **Optical Characterization Chamber**

**Features: Pinhole target, camera gimbal Tests: EFT. MTF, PSF, Distortion, saturation** 

#### **Radiometric Characterization Chamber**

Features: 1.65 m sphere, monochromator Tests: Radiometric and spectral calibration, polarization verification



**Ground Support Equiment room** 





- MISR will be calibrated in-flight by a regression of incident radiance against output DN.
  - Preflight data analysis has shown that the cameras are linear, except at extremely low inputs (scene reflectance < 5%).
  - The use of a linear or non-linear equation, e.g. the quadratic

$$DN - DN_o = G_o + G_1 L_{\lambda} + G_2 L_{\lambda}^2$$

has been investigated. This equation is linear at high radiances and quadratic at small radiances. This latter equation will be baselined, upon completion of the current study.

-  $L_{\lambda}$  is the sensor band-averaged spectral incident radiance, averaged over both in-and-out-of-band wavelengths and reported in units of [W m<sup>-2</sup> sr<sup>-1</sup>  $\mu$ m<sup>-1</sup>]:

$$L_{\lambda} = \frac{\int L_{source} \Re \lambda d\lambda}{\int \Re \lambda d\lambda}$$

- R is the relative pixel spectral response; DN is the camera output digital number; G<sub>0</sub>, G<sub>1</sub>, and G<sub>2</sub> are the pixel response coefficients; DN<sub>o</sub> is the DN offset, unique for each line of data, as determined by an average over the first eight "overclock" pixel elements.

### RADIOMETRIC CALIBRATION: CAMERA OUTPUT DN



Input file:12/eb98\_4\_long1Repetition numbComero:AirMISR NadirFor highest lighFP temp:-5C- mean:147Band 4:865 nm- min:68.26Integration time:21.8 ms- scatter overPixels:13 to 1516Average DN:Calibration Repetition 18

Repetition number: Averaged over all reps For highest light level: - mean: 14759. +/- 739. DN - min: 68.26 % of maximum DN - scatter over reps: 15. +/- 1. DN Average DN: 528 1121 1485 1854 4788 7031 8196 10521 11293 14759



## **MEASURED CAMERA SNR**





### MEASURED CAMERA SATURATION LEVELS



 $An \otimes Af \otimes Aa \land Bf \land Ba \square Cf \square Ca \land Df \land Da$ 



# SPECTRAL CALIBRATION





JPL

#### **COMPOSITE RESPONSE PROFILE:**

- Measured data 400 to 900 nm
- In-band at 2.6 nm resolution, 0.5 nm sampling, 7 field position • Out-band at 19.5 nm resolution, 5 nm
- sampling, 3 field positions
  Spectral model insludes focal-plane measurements to 1100 nm, and Code V lens model 365 to 400 nm.

**IMPROVED TESTING:** 

 Obtained by use of an integrating sphere at monochromator exit slit. Spectral uniformity of illumination improved reduced from several nm to several tenths of nm.

## SPECTRAL RESPONSE FUNCTION DETERMINATION



- Separate in- and out-band measurements allowed us to cover 10<sup>-4</sup> sensitivity range
- In-band spectral response measurements:
  - 400 to 900 nm wavelength range
  - 2.6 nm spectral resolution
  - 0.5 nm sampling
- Out-band spectral response measurements:
  - 400 to 900 nm wavelength range
  - 19.6 nm spectral resolution
  - 10 nm sampling
- Radiometric model utlized to extend response region from 365 nm to 1100 nm.
  - lens model using CODE V at 5 field positions.
  - focal plane measurements of quantum efficiency (350-1100 nm)
  - analog-to-digital gain using camera response to varying integration time (while viewing the integrating sphere)
- Both measured and band-averaged spectral response measurements published within the ARP

### MEASURED SPECTRAL PARAMETERS







- MISR testing of 10 cameras (9 flight and 1 spare) has been successfully completed after 1 year development and 1 year testing and analysis
- 6 weeks per camera required to provide OCC (EFL, distortion, PSF), RCC (radiometric, spectral calibration, polarization verification), hot and cold margin, dynamics, and magnetics testing.
- Several verification failures appear to have little impact on the mission
  - swath overlap meets requirements, though camera boresight failures noted
  - response uniformity meets requirement for all but a handful of pixels. Only 8 pixel zones (4 pixel block) out of 13,536 have a local uniformity exceeding 10%
- Several verification failures result from unprecendented camera specifications, driven by 3 % radiometric requirement. Successful test program allows mission objectives to be met, following ground processing
  - out-of-band errors can be reduced from 4% to 0.5% when needed. No correction necessary for Band 1, or bright targets
  - PSF deconvolution requires minimal processing: 1D, 51 pixels PSF, 20 iterations (no FFT required)
- Saturation appears to affect many pixels within the line array.
  - Saturation unlikely on orbit. Data Quality Indicators will identify affected pixels.

## **JPL** EM CAMERAS INVALUABLE FOR DIAGNOSING / FIXING PROBLEMS



| Problem                                                      | Cause                                           | Solution                                                    | Status                        |
|--------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------|-------------------------------|
| White light leaks in filter                                  | Bondlines between bands                         | Masks added to filter                                       | Fixed                         |
| Interference fringes in flat-<br>field data                  | Fabry-Perot interference between CCD and filter | Increase spacing between<br>filter and CCD                  | Fixed                         |
| Spurious signal in CCD                                       | Illumination of silicon<br>around CCD bond pads | Addition of light shield to<br>focal plane package          | Fixed                         |
| Insufficient out-of-band rejection                           | Spattering in filter coatings                   | Higher quality flight filter<br>Spatter side down           | Improved flight performance   |
| Low-level "halo" around point-source image                   | Reflection between CCD and filter               | See above. Correction in data processing if needed          | Improved flight performance   |
| Excess power needed to cool CCD to -10°C                     | Thermal leaks                                   | Focal plane temperature changed to -5°C                     | Fixed                         |
| Complex assembly<br>procedure to achieve<br>repeatable focus | Lens to camera head<br>interface flanges        | Interface redesigned and simplified                         | New design<br>breadboarded    |
| Low-level inter-band<br>electrical crosstalk<br>(0.07%)      | Suspected inadequate grounding                  | Additional grounding or<br>correction in data<br>processing | Options being<br>investigated |



## SATURATION BLOOMING







- Filter scatter sites and CCD/ filter reflections determined to be cause of finite width PSF and out-of-band performance, see:
  - Korechoff, R.P, D.J. Diner, D.J. Preston, C.J. Bruegge (1995). In Advanced and Next-Generation Satellites. Spectroradiometer focal-plane design considerations: lessons learned from MISR camera testing. EUROPTO/ SPIE Vol. 2538, pp. 104-116, 25-28 September.







## **JPL** MULTIPLE IN-FLIGHT CALIBRATION METHODOLOGIES



- MISR will make use of four calibration methodologies, in order to assess calibration uncertainty and reduce systematic errors.
  - On-Board Calibrator (OBC) hardware are used to establishes an absolute and relative calibration for each pixel. The OBC consists of solar-reflecting diffuse panels (Spectralon), detector standards, and a goniometer to verify there is no degradation in the reflectance shape. Data are acquired monthly.
  - Vicarious calibration (VC) can be one of three types:
    - 1) High-altitude sensor (e.g. AirMISR) VC
    - 2) Surface-radiance VC
    - 3) Surface reflectance VC
  - Histogram equalization statistics are used to provide a relative-calibration of the pixels within an array.
  - Trend analysis are used to fold other calibration data into the coefficient algorithm (e.g. preflight). Retrospective data are weighted less with time.
- A weighting algorithm will combine the multiple data in order to achieve the most accurate sensor calibration.

## **IFRCC PROGRAM ELEMENTS**

JPL







# **ARP STRUCTURES**



| File name                          | Description                                                                                                                                                                                                                                                                             |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Preflight<br>Characterization Data | <ul> <li>preflight instrument characterization parameters</li> <li>unlikely to be modified once delivered</li> <li>measured pixel spectral response functions (7x36),<br/>standardized spectral response functions (1 per band),<br/>instantaneous fields-of-view</li> </ul>            |
| Preflight Calibration Data         | <ul> <li>input to DAAC processes</li> <li>unlikely to be modified once delivered</li> <li>spectral descriptors relevant to Level 1B1 and Level 2 standard products</li> <li>band weighted solar irradiances</li> </ul>                                                                  |
| In-flight Calibration Data         | <ul> <li>parameters updated monthly on-orbit</li> <li>at-launch values are initialized by the preflight<br/>calibration data</li> <li>radiometric calibration coefficients, calibration<br/>uncertainties, signal-to-noise ratios, and Detector Data<br/>Quality Indicators.</li> </ul> |
| Configuration Parameters           | <ul> <li>threshold parameters and process control limits used<br/>by DAAC processes</li> </ul>                                                                                                                                                                                          |



# ARPGEN PROCESSING CODE



### Data conditioning

- Resamples photodiode data to CCD data time acquisition
- Removes corrupt data

### Regression

- Regresses CCD DN data against photodiode measured incident radiances
- Quadratic fit produces  $G_0$ ,  $G_1$ , and  $G_2$  coefficients for every pixel
- Data weighted inversely by the DN variances (noisy data weighted less)
- Process repeated using 3 independent on-board standards (HQE, PIN nadir, PIN at closest view angle to camera being calibrated)

### Coefficient trending

- Uses historical coefficients and present coefficient
- Performs a quadratic fit to the data
- Reported coefficient comes from fit. This smooths gain coefficients, in case of noise in the retrieval

## Coefficient weighting

- Final coefficients come from a weighted average of the multiple determinations (vicarious and 3 detector standards)
- Weighting is inversely proportional to the methodology uncertainty



### ARPGEN PROCESSING (CONT.)



#### Performance summary

- SNR computed from residuals of CCD DN against photodiode radiances
- sliding window does local fit of the data, to determine local variances
- SNR used to update radiometric uncertainty tables
- CCD element response uniformity updated as part of detector data quality metric



# JPL | LEVEL 1B1 RADIOMETRIC PRODUCT



| Parameter<br>name       | Units                                                  | Horizontal<br>Sampling (Coverage)                                                         | Comments                                                                                                                                                                        |
|-------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Radiance                | W m <sup>-2</sup> μm <sup>-1</sup><br>sr <sup>-1</sup> | 250 m nadir, 275 m off-<br>nadir, or averages per the<br>camera configuration<br>(Global) | <ul> <li>Radiometrically-scaled data</li> <li>No geometric resampling</li> <li>9 cameras, 4 bands</li> <li>Uncertainty reported in Ancillary<br/>Radiometric Product</li> </ul> |
| Data Qual.<br>Indicator | None                                                   | Same as above                                                                             | • 0 (within spec.); 1 (reduced accuracy), 2 (unusable for science); 3(unusable)                                                                                                 |

### **RADIANCE SCALING**

- Radiometric calibration coefficients are used to retrieve a band-averaged spectral radiance. Total-band response is included.

#### **RADIANCE CONDITIONING**

- PSF deconvolution to sharpen the image, compensating for focal-plane scattering;
- A standardized spectral response function is assumed.





• Data Quality Indicators (DQI) are assigned to each Level 1B pixel. These are assigned the values:

| DQI<br>value | significance         | Error component<br>radiance uncertainty<br>contribution | Level 1B2 resample<br>weighting |
|--------------|----------------------|---------------------------------------------------------|---------------------------------|
| 0            | within specification | None                                                    | full                            |
| 1            | reduced accuracy     | 1-3%                                                    | half                            |
| 2            | unusable for science | 3-50%                                                   | none                            |
| 3            | unusable             | >50%                                                    | none                            |

- Saturation blooming (Note: in average mode pixel is sat. if sat. in red band)
  - DQI=0 if no. saturated pixels (nsat)=0
  - else DQI=1 if specific pixel under test has < 0.5% radiometric error
  - else DQI=1 if specific pixel under test has < 3.0% radiometric error; else DQI=2
- Video offset uncertainty
  - DQI=0 if line average DN less than threshold (~12,000 DN)
  - else DQI=1 if specific pixel under test has < 0.5% radiometric error
  - else DQI=1 if specific pixel under test has < 0.5% radiometric error; else DQI=2



## DATA QUALITY INDICATORS (DQI), CONT.



#### Detector anomaly

- Values can be predetermined and stored in ARP
- SNR used as DQI criteria

| SNR  | DDQI value |
|------|------------|
| >100 | 0, else    |
| >90  | 1, else    |
| > 10 | 2, else    |
|      | 3          |

- Detector response uniformity used as DQI criteria

| Uniformity,<br>4x4 average<br>mode | DDQI<br>value |
|------------------------------------|---------------|
| <10%                               | 0, else       |
| <15%                               | 1, else       |
| <50%                               | 2, else       |
|                                    | 3             |

| Uniformity,<br>2x2 average<br>mode | DDQI<br>value |
|------------------------------------|---------------|
| <10%                               | 0, else       |
| <15%                               | 1, else       |
| <50%                               | 2, else       |
|                                    | 3             |