Jet Propulsion Laboratory
Interoffice Memorandum
MISR SCIENCE DFM \#153

April 10, 1998
To: Carol Bruegge
From: Nadine C. Lu Chrien
Subject: BRF measurements made for MISR OBC
CC:
The MISR facility for the measurement of bidirectional reflectance properties is described in "Directional reflectance characterization facility and measurement methodology" (McGuckin, et al 1996). Presented here are the results from the final measurements taken to represent the MISR protoflight calibration panels (PF-4 and PF-5). The names of the data files collected to characterize the hemispheric BRF are listed in Table 1 and Table 2.
The MISR reflectance data consist of two measurements: the incident signal, V_{i} (referred to as "chan 1 out" in the data files), and the viewed (or reflectance) signal, V_{v} (referred to as "chan 0 out" in the data files). These measurements are taken for both s-polarization incident and p-polarization incident illumination conditions. These data are then converted to BRF. The BRF for an unpolarized source is then computed by taking the average of the s-polarization incident and p-polarization incident BRFs.

$$
\begin{gather*}
\operatorname{BRF}\left(\theta_{i} ;\left(\theta_{r}, \phi_{r}\right)\right)=\frac{V_{v}\left(\theta_{i} ;\left(\theta_{r}, \phi_{r}\right)\right)}{V_{i}(\mathrm{REF})} \cdot \frac{1}{C_{\text {energy }} \Omega_{d} 10^{\mathrm{ND}}} \cdot \frac{1}{\cos \theta_{r}} \tag{1}\\
C_{\text {energy }}=\frac{V_{v}(\text { energy calibration })}{V_{i}(\mathrm{REF})} \tag{2}
\end{gather*}
$$

where,
Ω_{d} is the detector solid angle, 10^{ND} refers to the neutral density filter used in calibration, and $C_{\text {energy }}$ is the mean value from the energy files taken for the data set.

Experimental Parameters

λ, nm	Ω_{d}, sr	10^{ND}
442	$8.722 \mathrm{e}-4$	3.126 e 3
632	$8.722 \mathrm{e}-4$	2.838 e 3
860	$8.722 \mathrm{e}-4$	4.074 e 3

The reflectance data were collected at 632.8 nm with source elevation angles of $8^{\circ}, 40^{\circ}, 45^{\circ}, 50^{\circ}$ and 55°. The source azimuth angle was at 0°. For each of these angles of incidence, the detector viewed
the reflected signal at elevation angles, θ_{r}, of $1^{\circ}, 10^{\circ}, 20^{\circ}, 30^{\circ}, 40^{\circ}, 50^{\circ}, 60^{\circ}, 70^{\circ}$ and 80°. For each of these elevation angles, the detector viewed the reflected signal at azimuth angles, ϕ_{r}, from 0° to 180° at a sampling interval of 10°; symmetry in the BRF distribution for azimuth angles from 180° to 360° is assumed.

The measured BRF was resampled via spline interpolation/extrapolation and a numerical integration over the hemisphere was performed to arrive at the hemispheric reflectance factor (see Figure 1). The hemispheric reflectance factor (interpolated to 632 nm) measured by Labsphere for a source at 8° for the same sample was 0.983 ; a 0.8% difference from our result.

Table 1: Data files 'Position 2'" hemispheric, p-polarization incident

			θ_{i} [degrees]				
			8	40	45	50	55
	calibration		97 g 08140.934	97 g 08162.728	97 g 14180.132	97 g 15123.751	97 g 22145.922
	calibration		97 g 08141.015	97 g 08162.828	97 g 14180.216	97 g 15124.523	97 g 22150.011
$\begin{aligned} & \mathscr{N} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$		1	97 g 08141.725	97 g 08163.501	97 g 14180.624	97 g 15124.909	97 g 22150.621
		10	97 g 08143.252	97 g 08164.605	97 g 14181.720	97 g 15130.313	97 g 22152.343
		20	97 g 08145.246	97 g 08170.004	97 g 14182.822	97 g 15131.455	97 g 22153.506
		30	97g08150.521	97 g 08171.047	97 g 14183.946	97 g 15132.547	97 g 22154.618
		40	97 g 08151.718	97 g 08172.400	97 g 14185.137	97 g 15133.959	97 g 22155.805
		50	97 g 08152.932	97 g 08173.730	97 g 14190.357	97 g 15135.151	97 g 22161.006
		60	97g08154.230	97 g 08175.010	97 g 14191.603	97 g 15140.844	97 g 22162.414
		70	97 g 08155.415	97 g 08180.425	97 g 14193.733	97 g 15142.511	97 g 22163.638
		80	97g08160.654	97 g 08181.634	97 g 14195.012	97 g 15143.717	97 g 22164.915
calibration			97 g 08162.515	97 g 08183.231	97 g 14200.502	97 g 15150.323	97 g 22170.419
calibration			97g08162.554	97 g 08183.339	97 g 14200.541	97 g 15150.401	97 g 22170.513
calibration			-	97 g 14134.319	-	-	-

Table 2: Data files "Position 2" hemispheric, s-polarization incident

Figure 1. measured hemispheric BRF of test-piece 12669-2 to characterize PF calibration panels

The hemispheric measurements were performed on the test-piece as the laboratory setup did not allow such measurements to be done on the actual protoflight units. Only principal plane measurements could be done on the protoflight units. Figure 2 shows a comparison of the BRF in the principal plane (normalized to the BRF at $\theta_{\mathrm{r}}=0^{\circ}$ as there were no calibration files done for the protoflight panels). It was discovered that the test-piece had two distinct regions to it. Rotation of the test-piece by 90° in the laboratory measurement setup did not affect the result. One region, referred to as "position 2" better matched the BRF results obtained from the protoflight units. The data from this position are the ones documented in this memorandum and which were provided as the "BRF database".

The protoflight panels, which are much longer than the test-piece did not exhibit this behavior when measured at various locations. It was subsequently noted by David Haner, who did the measurements, that there was a slight bump/dip in the test-piece in the vicinity of "position 1 ". It was barely noticeable and the anticipation was that the effect would be negligible. This was not however the case.

Figure 2. comparison of principal plane measurements on the protoflight panels with the test-piece

Figure 3 illustrates that the "position 2" data better characterize the MISR protoflight calibration panels. The expected range of view elevations from the MISR cameras is 9° to 70°. The anticipated solar incidence angle onto the calibration panels is from 38° to 55°. The azimuth angles relative to the source (which corresponds to our laboratory setup) will be on the $\phi_{r}=180^{\circ}$ side.
"Position $1^{\prime \prime}, \theta_{i}=45^{\circ}$ p -polarization incident

"Position $2^{\prime \prime}, \theta_{i}=45^{\circ}$ p -polarization incident
 $\theta_{r}[\mathrm{deg}]$
$\phi_{i}=180^{\circ}$.an_ratio $=$ average over all θ_{r}
\times PF-4, Aug95 \times PF-4, Apr95 \square PF-5, Aug95 \quad PFF-5, Apr95

Figure 3. relative difference between protoflight panels and test-piece
The decision was made to acquire data for more illumination angles at a single wavelength (632 nm) rather than to acquire fewer illumination angles at all possible wavelengths ($442 \mathrm{~nm}, 632 \mathrm{~nm}$ and 860 nm). The measurements that were done at 442 nm and 860 nm were made with the source at 55° and at "Position 1". In the interest of getting the best set of data to characterize the protoflight panels, subsequent testing, including the comparison of different locations on the test-piece were done at 632 nm only. Comparisons of the BRF with wavelength are shown in Figure 4 and Figure 5 and Table 3 and Table 4. The relative difference is less than 2.5%. As seen in Figure 2, the measurements for PF-4 and PF-5 vary by about 1% between Apr95 and Aug95. This could be due to slightly different locations on the panel having been measured or due to the realignment of the test setup. At any
rate, the error due solely to wavelength difference is likely to be less than the 2.5% shown. Other contributing factors are the uncertainty in the calibration of the neutral density filter (see equation 1), the alignment of the test setup. The 442 nm laser and the 860 nm laser are not as easily aligned nor I believe quite as stable as the 632 nm laser.
$\theta_{i}=55^{\circ}$, unpolarized

Figure 4. principal plane BRF with wavelength

Figure 5. absolute percent difference in BRF from 632 nm
In conclusion, the BRF of the MISR protoflight calibration panels has been characterized. The assumption has been made that spectral variations in the BRF between the MISR wavelengths will be negligible when compared to other issues such as spatial variations on the protoflight panels themselves and the necessity of using the test-piece to characterize the BRF of the calibration panels, rather than doing a hemispheric BRF measurement on each of the protoflight panels directly.

Table 3: Percent difference between BRF measured at $\theta_{i}=55^{\circ}$ and 442 nm and 632.8 nm [\%]

$\begin{gathered} \phi_{\mathrm{r}} \\ {[\mathrm{deg}]} \end{gathered}$	θ_{r} [deg]								
	1.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0
0.0	-1.3	-1.3	-1.1	-1.2	-1.6	-1.2	0.9	0.6	1.7
10.0	-1.3	-1.2	-1.0	-1.1	-1.5	-0.7	0.3	0.7	1.2
20.0	-1.3	-1.6	-1.1	-0.7	-1.0	-0.4	0.5	0.5	1.9
30.0	-1.3	-1.4	-1.0	-0.9	-0.9	-0.1	-0.1	0.1	1.5
40.0	-1.1	-1.0	-0.8	-0.9	-0.7	-0.2	0.1	-0.0	1.6
50.0	-1.2	-1.2	-0.7	-0.4	0.0	-0.0	0.2	0.6	0.7
60.0	-1.2	-1.5	-0.4	-0.4	-0.4	-0.2	0.1	0.0	1.1
70.0	-1.3	-1.2	-0.7	-0.3	-0.2	0.2	0.4	0.6	0.8
80.0	-1.2	-1.3	-0.4	-0.5	0.1	-0.1	0.2	0.5	1.3
90.0	-1.3	-1.4	-0.4	-0.3	-0.2	0.1	0.3	0.5	1.6
100.0	-1.0	-0.9	-0.3	-0.2	0.2	0.4	0.3	0.0	1.4
110.0	-1.2	-1.1	-0.2	0.2	0.0	0.3	0.6	0.3	1.1
120.0	-1.4	-0.8	-0.4	0.3	-0.1	0.5	0.2	1.0	0.6
130.0	-1.4	-0.7	-0.2	0.0	0.2	0.4	0.5	0.7	1.2
140.0	-1.5	-0.6	0.0	-0.1	0.3	0.5	0.9	0.7	0.7
151.0	-1.4	-0.1	-0.3	-0.1	0.7	0.6	1.2	0.8	1.0
160.0	-1.4	-0.7	-0.4	-0.2	0.0	0.8	0.8	0.8	1.7
170.0	-1.4	-0.5	-0.4	0.1	0.3	0.5	1.0	1.3	1.6
180.0	-1.3	-0.4	-0.1	-0.1	-0.1	0.6	0.7	0.7	1.1

Table 4: Percent difference between BRF measured at $\theta_{i}=55^{\circ}$ and 860 nm and 632.8 nm [\%]

$\begin{gathered} \phi_{\mathrm{r}} \\ {[\mathrm{deg}]} \end{gathered}$	$\theta_{\mathrm{r}}[\mathrm{deg}]$								
	1.0	10.0	20.0	30.0	40.0	50.0	60.0	70.0	80.0
0.0	0.6	0.8	0.4	0.0	-0.1	0.4	-1.2	-1.3	-1.6
10.0	0.5	0.5	0.4	-0.2	-0.5	-1.0	-1.8	-1.2	-1.2
20.0	0.7	0.4	0.2	0.1	-0.8	-1.1	-0.6	-1.2	-1.4
30.0	0.7	0.2	-0.0	-0.2	-0.7	-1.1	-1.1	-0.8	-1.1
40.0	0.9	0.6	-0.2	-0.6	-0.8	-1.4	-1.3	-1.2	-0.5
50.0	0.8	0.2	-0.2	-0.6	-0.6	-1.2	-0.7	-0.3	-1.5
60.0	0.8	-0.2	-0.2	-0.8	-0.9	-1.3	-1.0	-1.1	-0.4
70.0	1.0	0.0	-0.6	-0.8	-0.9	-0.9	-0.7	-0.2	-0.4
80.0	1.0	-0.4	-0.4	-1.0	-1.1	-1.5	-1.1	-1.3	-0.9
90.0	0.8	0.0	-0.4	-0.8	-1.5	-1.0	-0.6	-1.2	0.1
100.0	0.6	-0.2	-0.3	-1.1	-1.1	-1.2	-1.1	-0.9	-0.3
110.0	0.6	-0.5	-0.4	-1.0	-1.7	-1.3	-1.0	-1.0	0.0
120.0	0.5	-0.4	-1.0	-0.9	-1.5	-1.4	-1.3	-0.5	-0.1
130.0	0.5	-0.3	-0.8	-1.4	-1.5	-1.4	-1.2	-1.5	-0.4
140.0	0.4	-0.1	-0.7	-1.3	-1.8	-1.7	-1.1	-1.7	-0.4
151.0	0.5	-0.4	-1.0	-1.4	-1.8	-1.3	-1.3	-1.8	-0.2
160.0	0.4	-0.5	-0.9	-1.5	-2.4	-2.1	-2.2	-2.1	-0.9
170.0	0.4	-0.1	-1.0	-1.4	-1.8	-1.6	-1.8	-2.1	-0.9
180.0	0.6	-0.5	-1.0	-1.5	-2.2	-2.0	-1.9	-2.0	-0.8

