Follow this link to skip to the main content
NASA Jet Propulsion Laboratory California Institute of Technology
JPL - Home Page JPL - Earth JPL - Solar System JPL - Stars and Galaxies JPL - Science and Technology
Bring the Universe to You: JPL Email News JPL RSS Feed JPL Podcast JPL Video
MISR - Multi-angle Imaging SpectroRadiometer
  Gallery  
 Home
 Mission
 Get Data
 Gallery
Latest MISR Imagery
A Collection of MISR Imagery
Suggest an Image
MISR Instrument
AirMISR Instrument
AIrMISR Flight Imagery
 News and Events
 Publications
 FAQs
 Ask a Question
 About Us
 Other Resources
 Internal
A Collection of MISR Imagery
Breakup of the World's Largest Iceberg
Larger images available View high-res tiff

Breakup of the World's Largest Iceberg
11/12/2003

Iceberg B-15A was the largest iceberg in the world (measuring about 11,000 square kilometers) when it broke away from Western Antarctica's Ross Ice Shelf in March 2000. It held that distinction for over three years until splitting into two pieces in early October, 2003. The Multi-angle Imaging SpectroRadiometer (MISR) acquired these views of the new iceberg B-15J (resting against Ross Island) and B-15A (now free to drift into the Southern Ocean) on October 26. Several massive icebergs (including B-15A) had migrated during 2000 and 2001 and ground against Ross Island, forming a barrier that influenced wind and current patterns and altered the regional ecology.

The two images provide information on both the spectral and angular reflectance properties of ice types in the region. The left-hand panel is a false-color view from MISR's vertical-viewing (nadir) camera in which near-infrared, red and blue spectral data are displayed as red, green and blue, respectively. Because of the tendency of water to absorb near-infrared wavelengths, some ice types exhibit an especially bright blue hue in this display. The right-hand panel is a multi-angular composite from three MISR cameras, in which color acts as a proxy for angular reflectance variations related to texture. Here, data from the red-band of MISR's 60? forward-viewing, nadir, and 60? backward-viewing cameras are displayed as red, green and blue, respectively. In the southern latitudes, MISR's backward-pointing cameras receive a stronger signal from surfaces that predominantly forward scatter sunlight (these tend to be smooth surfaces), and MISR's forward-pointing cameras receive a stronger signal from surfaces that predominantly backscatter sunlight (these tend to be rougher surfaces). Thus, the colors in this representation highlight textural properties of elements within the scene, with blue tones indicating smoother surfaces and red/orange hues indicating rougher surfaces.

The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire Earth between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 20511. The panels cover an area of 129 kilometers x 221 kilometers, and utilize data from blocks 153 to 155 within World Reference System-2 path 56. MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

Credit: Image credit: NASA/GSFC/LaRC/JPL, MISR Team.
Text acknowledgment: Clare Averill (Raytheon / Jet Propulsion Laboratory).

<< RETURN TO GALLERY