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Abstract. The standard method of deriving cloud fraction from space simply finds
the fraction of total image pixels that contains some cloud. The sensitivity of this
method to sensor resolution has been examined by Shenk and Salomonson [1972],
assuming the cloudy pixels are detected perfectly. Their experiment is reexamined to
show that the sensitivity is much more complex than they predicted. We derive the
upper and lower bounds of the true cloud fraction, A, given the standard method
estimate, A, to show that the range of possible values for A; can be, in general, very
wide. By including the fraction of apparent cloud edge and cloud interior pixels, the
bounds can be reduced and improvements to the standard method can be obtained.
However, this improvement is also resolution limited by the misidentification of
partially cloudy pixels as cloud interior rather than cloud edge. A potentially better
technique for estimating the true cloud fraction is therefare explored using a pattern
recognition approach. A nearest neighbor classification rule is used in two sets of
experiments: one using 684 simulated cloud fields as a training set, the other using
370 cloud fields based on Advanced Very High Resolution Radiometer (AVHRR)
measurements. Given the underlying distribution of A;, A, overestimates A; with
an overall average bias of 32% and standard error of 11% for the simulated training
set, and a bias of 35% and a standard error of 3% for the AVHRR training set. The
pattern recognition estimate, A,, is essentially unbiased and has a standard error
of 12% for both training sets. The relevance of these training sets to new scenes
and the importance of imperfect cloud detection have yet to be investigated, but
the pattern recognition technique shows considerable potential advantage over the
standard technique in providing unbiased estimates of cloud fraction that are less
sensitive to the effects of sensor resolution.

1. Introduction

Clouds have long been recognized for their important
role in the Earth’s climate system. Yet our understand-
ing of their microphysical and macrophysical properties,
their interaction with the environment, and their influ-
ence on a changing climate remains incomplete |[e.g.,
Arakawa, 1975; Cess et al., 1990; Arking, 1991]. To im-
prove our understanding of cloud and cloud processes,
further monitoring is necessary. To this end, programs
such as the International Satellite Cloud Climatology
Project (ISCCP) [Schiffer and Rossow, 1983; Rossow
and Schiffer, 1991] have been extracting numerous cloud
variables through the interpretation of satellite mea-
surements. One of these variables is cloud fraction.
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The importance of cloud fraction as a variable in
the physics and parameterizations of cloud processes
has been demonstrated in the literature at least as
far back as London [1957]. Since then, cloud fraction
has been shown to be important in, for example, the
parameterization of cloud field albedo [e.g., Welch and
Wielicki, 1989; Kobayashi, 1988] and in the derivation
of the surface radiation budget [e.g., Frouin et al., 1988].
Indeed, cloud fraction is recognized as a critical variable
required to accurately assess cloud feedback effects in
climate [e.g., Harshvardhan, 1982; Arking, 1991]. It is
no wonder that accurate measurements of cloud fraction
have been put on the ISCCP high-priority list [Schiffer
and Rossow, 1983].

Unfortunately, obtaining good estimates of cloud frac-
tion from satellite measurements has long been a prob-
lem [Rossow, 1989; Wielicki and Parker, 1992] (here-
inafter WP92). The problem can be coarsely broken
into four parts: cloud definition, cloud fraction defi-
nition, resolution effects, and threshold effects. The
definitions of cloud and cloud fraction are discussed
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in section 2. Resolution effects refer to the problems
caused by the measuring instrument’s finite field of
view. Threshold effects include such factors as instru-
ment signal-to-noise ratio, the amount of contrast be-
tween cloud and the background, and the logic used to
determine the threshold of an observed quantity that
separates clear from cloudy. Note that these problems
are not necessarily independent from each other (e.g.,
the threshold effect depends on the definition of cloud
and on the resolution of the measurements). For this
reason, it has been difficult to unravel any one partic-
ular effect; a combination of the four is usually what
is under investigation [e.g., Wielicki and Welch, 1986;
WP92; Key, 1994].

This study focuses on isolating and examining the
resolution effect and its associated errors on measure-
ments of cloud fraction. Section 2 reviews the definition
of cloud and cloud fraction and defines the “perfect
cloud detector,” which allows the resolution effect to
become independent of the other three problems men-
tioned above. A similar approach was taken by Shenk
and Salomonson [1972] (hereinafter SS72), and in sec-
tion 3 we revisit their experiment to shed additional
light on this problem. We discover errors in their ex-
perimental results concerning the effect of sensor res-
olution and cloud size on estimates of cloud fraction.
Section 4 develops a mathematical framework to set up-
per and lower limits on our estimate of the true cloud
fraction and derives several equations that describe the
dependence of measured cloud fraction on resolution.
The derivation of these equations helps to reveal why
the analysis of SS72 breaks down. The outcome of sec-
tions 3 and 4 stresses the importance of cloud pattern in
determining the resolution effects. Therefore section 5
takes a pattern recognition approach to estimating the
true cloud fraction and compares the errors with the
“standard method” (defined in section 2) and with (17)
derived in section 4. Section 6 summarizes the results
of this study.

2. A Matter of Definition

There are numerous ways in which satellite data can
be used for cloud detection (for a review, see Rossow
et al. [1985], Goodman and Henderson-Sellers [1988],
and Rossow [1989]). However, a long-standing problem
with satellite cloud detection algorithms is obtaining a
proper method of validation. This is due to the lack of
a “truth” data set with which to compare the derived
cloud cover [e.g., Rossow et al., 1985; Rossow, 1989].
One of the underlying problems in obtaining a “truth”
data set lies in how we currently define “cloud.”

Most attempts at defining cloud have been measure-
ment-based [Rossow, 1989]. For example, all cloud
detection techniques have some defined threshold in
that some value of an observed quantity divides the
population of the measured quantity into either clear
or cloudy categories. Although this may prove useful
in many cloud research areas, the definition of cloud
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is based on instrument and algorithm performance.
This contributes to a large variance in estimated cloud
fraction by different instruments and algorithms [e.g.,
Hughes, 1984; Di Girolamo, 1992; WP92]. In practice,
we may forever have to use such a definition; however,
the problem is more fundamental in that a precise quan-
titative definition of cloud does not presently exist.

Clouds are conventionally defined as “a mass of water
or ice particles suspended in air.” This definition lacks
quantitative precision. For example, do two suspended
water droplets 10 pm in diameter, placed 200 m apart,
constitute a cloud? If so, present state-of-the-art satel-
lite cloud detection methods will need some refinements!
If not, then the first step in establishing any sort of
“truth” is to establish a precise definition of cloud. Note
that any definition of cloud must include a minimum
scale over which the cloud exists.

Cloud fraction is defined as the fractional area cover-
age of cloud over a particular background domain [e.g.,
Henderson-Sellers and McGuffie, 1990]. A common
approach to estimating cloud fraction from satellite
images is to compute the fraction of total image pixels
that contains some cloud and call this the “standard
method” for estimating cloud fraction. Note that pix-
els labeled as “cloudy” may be only partially cloud cov-
ered with reference to some established cloud definition.
Several methods have been proposed to explicitly ac-
count for partially cloud-filled pixels [e.g., Coakley and
Bretherton, 1982; Arking and Childs, 1985; Lovejoy et
al., 1987; Stowe et al., 1988]. However, these methods
all rely on further assumptions about the cloud field,
assumptions that are open for debate [e.g., WP92]. For
the remainder of this study, only the standard method
in estimating cloud fraction is examined, and it is com-
pared to (17) derived in section 4 and to a pattern
recognition approach for estimating cloud fraction in
section 5.

Since we are interested in isolating the resolution
effects from threshold and definition effects, we will
assume that measurements are made using a “perfect
cloud detector.” The perfect cloud detector offers per-
fect cloud detection in that any amount of cloud, how-
ever defined, within an image pixel flags that pixel as
“cloudy.” This approach eliminates threshold effects. It
also eliminates definition effects, except for the mini-
mum scale over which the cloud is defined. Thus the
standard method estimate of cloud fraction is exam-
ined in this study assuming a cloud-segmented image
obtained from a perfect cloud detector. This approach
to studying resolution effects on derived cloud fraction
was first introduced by SS72, except that the definition
effects were not discussed. We now reexamine the work
done by SS72 to gain better insight into the problem.

3. Paper Cloud Experiment Revisited

The paper cloud experiment of SS72 gave the first
demonstration of how finite sensor resolution measure-
ments can affect the interpretation of cloud fraction.
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Their experimental apparatus consisted of paper clouds
placed on a black background with a grid placed over
top, the resolution of which they could vary. An observer
then assessed the state of cloudiness of each pixel, for
more than 2 million pixels! Since SS72 also assumed
perfect detection as defined in section 2, the observer in-
cluded pixels that contained even the smallest amount
of cloud as “cloudy” (their Method 1). Their exper-
iment further assumed the standard method estimate
of cloud fraction, A., to be a function of only the true
cloud fraction, A;, and a parameter, R, that is equal
to the ratio of the true average areal cloud area, A, to
sensor resolution area, r2; that is,

A, = Ac(R, Ay). (1)

Their experimental results showed this to be true for all
cloud patterns so long as there were no large clear areas
within the image (i.e., for what they called “uniformly
distributed clouds”). The results are summarized in
Figure 2 of SS72 and show that considerable overesti-
mates of the true cloud fraction occur for small R.
SS72 concluded that if R can be estimated, then the
empirically derived equation (1) can be used to obtain
a better estimate of the true cloud fraction compared to
A, alone. They suggested that A (hence R) can be esti-
mated from the original coarse resolution image, even
though A will be overestimated due to coarse resolution
measurements. However, R can be better estimated by
measuring A, at two different resolutions. From (1) we

can write
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For any given scene, the average cloud size, A, is con-
stant, so that
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% r 0Ae.

R~ 2R or’ 3)
thus a4 oA
r e e

Consider a cloud field under analysis. The true cloud
fraction does not change; so, dA; = 0. Measurements
of DA, /Or are made by degrading the spatial resolution
of the sensor. Equation (1) is obtained empirically, and
from this (dA./dR)(A;) is obtained. This leaves two
equations [(1) and (4)] with two unknowns; hence, by
measuring A, and 8A./0r, R and A; can in principle
be solved, given the behavior of Figure 2 of SS72.

This approach requires considerable accuracy in (1).
‘We thus recreate the experiment of SS72, except that we
make use of the modern computer that allows us to use
many more pixels in our image with an enormous saving
in time compared to 1972 technology. However, by dis-
cretizing our clouds, we essentially define our smallest
element as the true cloud scale. This remains consistent
with our discussion in section 2, in that any established
definition of cloud must include a scale over which the
definition holds true. Further discussion on this point
is given in section 4. Also, SS72 considered three dif-
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ferent cloud patterns in their experiment. We consider
only their pattern 1 (regularly spaced clouds having the
same size), since detailed information to recreate their
patterns 2 and 3 were not provided. This should not
pose a problem since they concluded that the three
types of cloud pattern produced the same results.

We begin with a grid that has 2048 pixels per side and
define the pixel scale as our true cloud scale. A pixel
at this resolution is either fully clear or fully cloudy.
We then overlay regularly spaced columns and rows of
circular clouds, all having the same size (the clouds are
not exactly circular due to the discrete nature of com-
puter processing). We then degrade the resolution by a
factor of 2 and count up the number of coarse resolu-
tion elements that contain some cloud. We continue to
degrade by factors of 2 until A, = 1.

Our experimental results revealed one important dif-
ference compared to those reported in SS72: as R be-
came smaller, significant deviation in A, existed among
different cloud sizes (or, equivalently, a different number
of cloud elements) for a given A;. This is demonstrated
in Figure 1 for two values of A;. Asthe number of cloud
elements increases for a particular A;, A, increases more
slowly for a decreasing R. This behavior was observed
for the range of A, [0.05, 0.78] used in our experiment
(A = 0.78 is the upper limit for regularly spaced circu-
lar clouds of the same size), as well as for different grid
sizes (5122 — 2400%) and different degradation methods
(i-e., degrading by the prime numbers of the image size
versus by a factor of 2).

The deviation of our results from SS72 can easily be
explained. In order for SS72 to obtain a complete curve
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Figure 1. The behavior of A. as a function of R

(average cloud area/pixel area) for Ay = 0.545 and
A = 0.225 for several regular cloud arrays, each having
a different number of cloud elements generated from our
experiment.
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for a particular true cloud fraction, they had to use a
range of cloud sizes (hence a range in number of cloud
elements) in order to obtain a complete range of R (e.g.,
see Figure 1 of SS72). For example, small, medium, and
large clouds were used to get small, medium, and large
values of R, respectively. This was necessary due to the
limitation of their experimental apparatus, a problem
that our experimental apparatus does not possess. Thus
we conclude from our experiment that a unique empir-
ical relationship in the form of (1) that is applicable to
cloud patterns having clouds “uniformly distributed”
over the image does not exist, in contradiction to the
conclusions of SS72.

Accordingly, A, as revealed by our “paper” cloud ex-
periment not only depends on R and A; as stated in (1),
but it also depends on the number of cloud elements,
Teld, Within the image. One may suspect that all we
need to continue is to determine an empirical relation-
ship of the form A, = A(R, At,nca) and check for its
uniqueness. Unfortunately, with real satellite images,
nqq and X are not always easy to define, even for per-
fect detection, due to their dependence on the resolution
of the measurements, the irregular shape of clouds, and
our assumption of the connectivity of the cloudy pixels
that make up individual clouds. Moreover, we have so
far assumed that the clouds are “uniformly distributed”
over the scene; in reality, this is often not the case. For
cloud scenes having clouds clustering within the image,
the results presented in SS72 tend to overestimate the
effects of resolution [SS72]. Wielicki and Welch [1986)
came up with the same conclusion, but their results
also included threshold effects, making direct compar-
isons to the results presented by SS72 inappropriate.
Thus it appears that the above approach at character-
izing the effects of sensor resolution on measurements of
cloud fraction is inadequate. The next section presents
a more thorough analysis of the problem, showing where
(1) fails, how it is affected by subpixel cloudiness, and
what the real uncertainties are in cloud fraction under
various assumptions.

4. Mathematical Look at the Paper
Cloud Experiment

This section takes a formal look at the paper cloud
experiment in order to obtain a better understanding
of the behavior of A, with resolution. We begin by de-
riving the upper and lower bounds of A; given a mea-
surement, A, over a general cloud scene. To do so, we
follow closely the mathematical methodology of Raffy
[1993]. We also solve for A; under various assumptions
and cast it in the form of (1). The limitations of the
derivation are shown, which point to where and why the
assumptions used in (1) fail.

Let the resolution length of our measurement be equal
to r; for a square pixel. Consider discrete scale varia-
tions according to

ri=p%i=0,1,2 ..., t,

()
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where p is an integer greater than 1, and 7 is the scale
at which the cloud truth is (arbitrarily) defined. Note
that 7o = 1 defines the image scale and that the total
number of pixels of scale r; within the image is equal
to p?*. The experimental setup used in section 3 had
p=2andt=11.

Let us label each pixel of scale size 7; within the image
by the index wj(r;), where 7 = 1,...,p*. When the
resolution is increased from r; to 7.1, the pixel w; ()
gets subdivided into p? intervals, denoted by wj*(7iy1)
with the index m = 1,...p2, since (from (5))

T

Ti+1 » (6)
Let f be the image function whose value, measured at a
resolution 7; and located at wy(r;), is equal to fr, (wk)-
Raffy (1993] takes f, (wg) to be the mean value of f
over the smaller subintervals, w}*, that belong to wi as
described by Raffy [1993, Eq. (31)], and further uses a
constant threshold that is independent of scale. How-
ever, in the paper cloud experiment, no such regular-
ization takes place; f, (wx) remains binary at all levels
of Ti-

Lemma 1

(1)  If the pixel w;(r;) is cloudy, then
fri(w;) = 1 and atleast one f,,, (W) =
1, me{l, ..., p*}.

(2) If the pixel w;(r;) is clear, then
fri(w;) =0and f,,,, (W) =0Vm, me

{1, ..., p?}

Let N(r;) be the total number of pixels within the
image containing resolution elements of scale r; that
have f., = 1. That is,

pZi

N@r) =Y fri (@) ™)
J=1

Using the standard method, our estimate of cloud frac-

tion is given by

N (7“.‘)

Ae (ri) = o

®)
From Lemma 1, condition (1), we can immediately write
N (r;) S N (riy1) <p°N(ra),

which becomes

Acp r) ©)

with the substitution of (8). Repeated application of
(9) to determine A.(7;;4) yields

Ae (7‘,;)
p2d

Ae (rit1) < Ae (r3)

SAe(Ti+d)SAe(7'i) dE{l, ...,t—’i}.

(10)



DI GIROLAMO AND DAVIES:

To determine the bounds on A.(r:) = A:, we set d =
t — i and combine (5) and (10) to yield

(;l)z Ag (ri) < Ay < Ae ().

1

(11)

As an example, say we are using satellite data hav-
ing a resolution of 1 km, and we define our true cloud
scale to be 10 m. If the instrument and detection are
perfect, then for an observed cloud fraction of 80%,
(11) sets the bounds on the true cloud fraction as
0.008% < A; < 80%. Physically, the upper bound oc-
curs when all pixels detected as cloudy are fully cloud
covered; the lower bound occurs when each pixel de-
tected as cloudy contains only one cloud having a size
equal to the smallest defined cloud scale (10 m in the
above example). Although the lower bound situation
may be rare, the derivation is general. Thus, even with
perfect detection, the standard method to derive cloud
fraction can leave us with a wide range of possibilities
in the true cloud fraction when using coarse resolution
measurements.

To narrow the bounds on A;, we consider the case
when only cloud edge pixels carry the error in A.(r;).
Therefore cloud interior pixels are assumed to be fully
cloudy (i.e., our working assumption omits the possibil-
ity of partial cloudiness within a cloud interior pixel).
This seems to be a reasonable assumption given the ob-
servations of Wielicki and Welch [1986]. To be labeled
a cloud edge pixel, the pixel must be cloudy and at
least one of its eight neighboring pixels must be clear.
Lemma 1, condition (1), stands for cloud edge pixels.
A cloud interior pixel must have all eight neighbors as
cloudy.

Lemma 2

If the pixel w;(r;) is an interior cloud pixel, then
friw;) = 1 and fr,, (W) 1Vm, m €
{1, ..., p*}.

Let Nint(i) and Negge(ri) be the number of inte-
rior cloud pixels and cloud edge pixels, respectively,
within an image having resolution r;. Let Aj,¢(;) and
Acdge(r;) be their respective fractional coverage with
the same correspondence as (8). Note that N(r;) =
Nint(7i) + Negge(ri). From Lemma 2 we can immedi-
ately write

D?Nint (1) + Neage (i) < N (riy1) < pP°N(rs). (12)
Note that from Lemma 2,
Nint (rita) = P**Nint (r2) ;
and from Lemma 1,
Neage (7i) < Neage (Tita) -

Thus repeated application of (12) to determine N(7;+4)
yields

P?? Nint (7:) + Nedge (i) < N (riya) < p**N (). (13)
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From our definition of fractional coverage in (8), (13)
can be rewritten as

Aedge (Ti) <

Ain i) + >
¢ (i) p2d

Ae (riya) S Ac(rs).  (14)

To determine the bounds on A.(ry) = A, we set d =
t — ¢ and combine (5) and (14) to yield:

r 2
A (r3) + (;-) Avtge (r) S As < Ac(r).  (15)

As an example, say we are again using satellite data
having a resolution of 1 km, and we define our true
cloud scale to be at 10 m. If the detection is perfect,
then for an observed internal cloud fraction of 60% and
an observed edge cloud fraction of 20%, (15) sets the
bounds on the true cloud fraction as 60.002% < A; <
80%. Thus, by assuming that only the cloud edge pixels
(as defined in our coarse resolution measurements) can
be partially cloudy and that cloud interior pixels are
fully cloudy, we have narrowed the bounds on A; as
compared to (11).

Equations (11) and (15) show that for a finite defined
true cloud scale, the bounds on A; narrow as the res-
olution of the measurements increases. If the measure-
ments are made at the true cloud scale (i.e., if 7; = r¢),
then the standard method estimate of cloud fraction is
equal to the true cloud fraction under the assumption
of perfect detection.

‘We can proceed one step further under the assump-
tions used to derive (15) to obtain an exact solution
of A; using coarse resolution measurements. Say we
have a large number, Negge(7), of cloud edge pixels
in our image of resolution 7;. From Lemma 1, each
cloud edge pixel must contain at least one cloud edge
pixel of resolution 7;,4 and at most p?¢. If the im-
age has at least Negge(7:) cloud edge pixels at the 74
scale, and the rest of the pixels [(p?? — 1) Ngge(r;) of
them] are equally likely to be cloudy, then we can ex-
pect [(p?® — 1)/2]Neage(r:) of these remaining pixels to
be cloudy; therefore

N(rira) = p**Nint (i) + Neage (i)

2d__1
+(” - )Nedge(r,.).

From our definition of fractional coverage in (8) and by
setting d =t — 1, (16) becomes

()]
1+ —

Ti

which is the exact solution of the true cloud fraction
from coarse resolution measurements under the assump-
tion of perfect detection, the assumption that only the
cloud edge pixels (as defined in our coarse resolution
measurements) can be partially cloudy, and the assump-
tion that we have a large number of cloud edge pixels

having an average of nearly 50% cloud cover. If these
assumptions are met, then (17) can be used to obtain

(16)

Aedge (ri)

Ay = Aing (i) + .

(17)
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A; by simply measuring A, (7;) and Aegge(r;) within
the image under analysis.

Assuming an average of about 50% cloud cover for
partially cloudy pixels seems to be reasonable [Molnar
and Coakley, 1985]. However, we can expect that the
assumption of only cloud edge pixels being partially
cloudy and cloud interior pixels being fully cloudy holds
true for scales smaller than some cutoff scale r.; that
is, Vri, ¢ € {c,...,t}. For r; > re, it is possible that
a pixel w;j(r;) be partially cloudy, yet still be observed
as an interior cloud pixel. This situation is depicted in
Figure 2. Thus, for r; havingi € {1, ..., ¢—1}, (17)
may not be valid.

The validity of (17) can be tested using our “paper”
cloud experiment. To do so, Appendix A shows how
(17) can be transformed into (1), yielding

b2
Ae = A+ 0}

1
4 g (% +44,) 2,
where b > 0 and is equal to

1 1/
oo (TAN2 2 (TR)®
“\r Meld” |\

and ngyq is the number of cloud elements in the image.
Figure 3 shows a plot of A, versus R for various values
of A; along with the results from our paper cloud exper-
iment for a value of n,q = 100. We observe that (18)
agrees with the experiment for large values of R; how-
ever, as R decreases, the deviation between (18) and
the experiment increases. The deviation begins below
a cutoff R that appears to be a function of A;. Indeed,
the cutoff is a function of A; as shown in Appendix B,

(18)

Figure 2. The highlighted pixel is an example of a
partially cloud-covered pixel being labeled as a cloud
interior pixel rather than a cloud edge pixel.

DI GIROLAMO AND DAVIES: CLOUD FRACTION ERRORS

-2 -1 0 1 2 3 4

log, ((R)

Figure 3. The behavior of A, as a function of R for
values of A; ranging from 0.1-0.7 in steps of 0.1 as de-
rived from (18) (solid lines) and from our experiment
(symbols) for n.g = 100. The dashed line represents
the cutoff of (18), above which the validity is not guar-
anteed.

which derives the cutoff value of R beyond which (18)
is no longer valid for an array of regularly spaced cir-
cular clouds of the same size. The cutoff is also shown
on Figure 3. Note that the cutoff tends to be conser-
vative and that (18) does reasonably well beyond the
cutoff. This is expected since the population of cloud
interior pixels that are partially cloudy is still small just
beyond the cutoff; only when the population becomes
sufficiently large does the deviation between (18) and
the experiment become significant.

Figure 4 shows an example of the weak dependence
(18) has on nq. The dependence of A, on nggq becomes
smaller with decreasing R. This is in contrast with the
experimental results presented in Figure 1, where nggq
has the largest effect for small R; however, this effect lies
beyond the cutoff region for which (18) is valid. We can
thus conclude that the empirical behavior of A, with R,
for small R, depends on the degree to which wj(r;) is
partially covered by more than one cloud element (see
Figure 2). This, in turn, depends on the distribution of
clear areas within the image.

Unfortunately, observations from meteorological satel-
lites tend to be in the small R regime where (18), hence
(17), may no longer be valid. However, in examining
(18) we have gained a better insight into the reasons
behind the behavior of A, with resolution. It would
appear that A, depends on the pattern the clouds have
over the image. We can hypothesize that characteristic
cloud patterns result in similar values of A.. Evidence
for this hypothesis already exists in the literature. For
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example, WP92 reported that when individual cloud
scenes used to generate their Figure 2 (which depicts
the error in cloud fraction as a function of resolution
for several popular cloud detection algorithms applied
to many cloud fields) were grouped in terms of cloud
type, a more systematic dependence of cloud fraction
error became evident. Since each cloud type tends to
cluster about a certain range of patterns that are char-
acterized by a set of feature descriptors [e.g., Welch et
al., 1988], support for our hypothesis exists. Thus the
next logical approach is to develop a pattern recognition
technique that identifies a certain cloud pattern and at-
tempts to give a better estimate of A; as compared to
the standard estimate, A..

5. Pattern Recognition Approach to
Estimate Cloud Fraction

Our goal in this section is to extract cloud pattern in-
formation (i.e., features) from a coarse resolution cloud
mask image and to use this information to obtain a new
estimate, A, of A;. We will show that A is estimated
more accurately using A, than using the standard esti-
mate, A, or estimates using (17), A17. We proceed by
describing the list of features used to characterize the
pattern within the cloud mask image, the classification
rule that gives A,, the training set used to form the
classification rule, the allocation rate estimator appro-
priate for the classification rule, the optimum feature
vector, and finally, the results.

5.1. Feature List
Let X be a n-dimensional feature vector (1, ...,2y5),
where each z (k = 1, ..., n) is a measurable feature

from our image. Ideally, we would like z; to be mea-
sured at the true cloud scale, r;, because any measure
we use to characterize the pattern will depend on resolu-
tion [e.g., Welch et al., 1989]. From an implementation
point of view, we have only measurements taken at r;;
therefore the features used to characterize the pattern
are derived from the measurements taken at the scale
of r;. This limits the classification rule derived from a
training set to be applicable only to data of the same
resolution as the training set.

There are many features we can use to character-
ize pattern in our cloud mask image. From section 4,
obvious features include Ac(r;) and Aegge(ri). Other
popular features for the purpose of pattern recognition
can be found in the literature [e.g., Gu et al., 1989;
Teague, 1980; Haralick, 1979]. We choose two com-
mon approaches: gray level difference statistics (GLDS)
[Weszka et al., 1976] and moment invariants [Hu, 1962].
GLDS has been very useful in describing texture within
satellite images for the purpose of classifying clouds
le.g., Gu et al., 1989; Chen et al, 1989]. Basically,
GLDS is based on statistics gathered from absolute dif-
ferences between pairs of gray levels found in the image.
The statistics are summarized by such parameters as
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Figure 4. The behavior of A, as a function of R for
values of A; equal to 0.1, 0.3, 0.5 and 0.7, and n.g4
equal to 16 (solid lines) and 625 (dashed lines) derived
from (18). The thick lines represent the behavior of (18)
when b = 0; equation (18) is not valid below this line.

the mean, variance, contrast, entropy, local homogene-
ity, and angular second moment to name only some of
the more popular ones [e.g., Chen et al,, 1989]. For
pattern recognition, these parameters define a feature
space used by a classification rule. However, many of
these parameters have been empirically shown to be cor-
related, making some of the information content within
the feature space redundant [Baraldi and Parmiggiani,
1995]. Indéed, it is easy to show mathematically that
many of the parameters are correlated for a binary im-
age; the mean becomes equivalent to contrast and local
homogeneity, and the variance becomes equivalent to
the angular second moment. Thus we choose as features
the mean, variance, and entropy. A one-pixel difference
is used along the x and y axes of the image to compute
the GLDS statistical parameters. They are then added
vectorially to produce the features that belong to the
feature vector.

Moments are often classified as a shape descriptor
rather than a texture descriptor [Haralick and Shapiro,
1991]. The moments that we use are the moment invari-
ants of Hu [1961, 1962] who has derived seven moment
invariants that remain invariant under image transla-
tion, rotation, and scaling. These moment invariants
have since proven useful in pattern recognition prob-
lems [e.g., Hu, 1962; Dudani et al., 1977; Simpson et
al., 1991]. In this study we add to the feature space the
two lowest moment invariants as these contain the most
information.

From (4) it is reasonable to assume that information
at a degraded scale is also desirable. As a result, we
double the dimension of our feature space by including
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all the features mentioned above measured at a scale
ri—1 (for p = 2). Thus the dimension of our feature
space is n = 14.

5.2. Nearest Neighbor Classification Rule

Say we have N images to train our classifier. From
each of the N images, we can extract the training fea-
ture vectors {X1, X2, ..., Xn} as well as the true cloud
fractions {44, As2,. .-, Ain}, Which belong to the set
of cloud fraction classes {Cy,Cy, ..., C;}. In this study
we have 2z = 19 true cloud fraction classes, from 0.05 to
0.95 in steps of 0.05.

Given a new feature vector Xy, the nearest neighbor
classification rule assigns X to a class C, as follows:
Let X; satisfy min {||Xo - X;|l} Vi € {1, ..., N},
where || - || denotes the Euclidean metric. Assign Xo
to the class C, that X; belongs to. If more than one
X, is a nearest neighbor to X, the ties are resolved
randomly.

5.3. Training Set

The training set should consist of N images from
which we know {X;, A;;},, where (ideally) N is suf-
ficiently large to capture the rich variety of cloudy sys-
tems found over the globe. In order to know Ay;, the
training scenes must be measured at the resolution of
" the true cloud scale 7. Since 7 is at present arbitrarily
defined at a reasonably small scale, say less than 100 m,
difficulties exist in obtaining an appropriate data set,
given the current network of Earth-observing satellite
instruments. We have considered Landsat data, but
unfortunately we do not have the resources to obtain a
large volume of these types of data to derive a wide vari-
ety of cloud patterns to properly train our classification
rule.

Since this study deals with perfect cloud detectors,
this work must be viewed as pedagogical in that any
application to real satellite data must take into account
the effects of thresholds in determining clear versus
cloudy. Moreover, the aim of this section is to compare
the errors between A., Ai7, and A,. For this purpose,
any set of binary images will do so long as r; < 7.
Naturally, we would like the images to resemble clouds
as much as possible. With this in mind, we identify two
sources for the training set.

5.3.1. Simulated data. We generated stochastic
cloud field geometries using the model of Vdrnai [1996],
which is based on the model of Barker and Davies
[1992]; the main difference is the ability to include a
break in the scaling. Basically, the model generates
random Fourier coeflicients according to the desired
scaling and then performs an inverse Fourier transform
to obtain two-dimensional (2-D) variations in the cloud
structure. The required inputs are image size (in terms
of number of pixels), the scale break, the scaling before
and after the scale break, and the cloud fraction. We
chose an image size of 1024 x 1024 pixels. To produce
a wide variety of cloud fields, we varied the scale break
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from 1 to 13, the scaling before the break from 0 to
-1, and the scaling after the break from -3 to -4. We
generated 684 cloud fields, with cloud fraction varying
from 0.05 to 0.95 in steps of 0.05. To produce the cloud
mask image, we simply look at where the cloud does
and does not exist. The simulated cloud fields do look
realistic (examples are given by Loeb et al. [1996] and
Vidrnai [{1996]); however, they are confined to a single
layer.

5.3.2. AVHRR data. The source of the second
training set comes from the Advanced Very High Res-
olution Radiometer (AVHRR). We used AVHRR data
taken in the local area coverage mode, which has a sub-
satellite ground track resolution of 1.1 km. We have
acquired data taken over the North Atlantic, spanning
the period of August 1 to October 31, 1993. We have ex-
tracted 370 scenes (maximum number of usable data)
that were 1024 x 1024 pixels in size. The scenes are
swath in order to mini-
mize distortions in the cloud fields due to pixel expan-
sion. Appendix C describes the cloud mask applied to
the 370 scenes. The distribution in cloud fractions taken
from the AVHRR data is shown in Figure 5. Note the
characteristic bell shape of the distribution as predicted
by Fualls [1974], given the large image scale under anal-
ysis.

The two training sets define the true cloud scale to
be at the pixel scale of the original cloud mask image.
The true cloud fraction A; for each scene is derived
from this scale. The images are degraded by a factor of
32 to produce binary images that are 32 x 32 pixels in
size. Since we are assuming perfect cloud detection, a
coarse pixel is clear if all high-resolution pixels within
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Figure 5. The distribution of “true” cloud fractions
derived from the AVHRR training set.
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it are clear; otherwise, it is cloudy (see Lemma 1). The
feature vectors are extracted from the coarse resolution
images.

5.4. Allocation Rates

A common approach to evaluating the performance of
a classifier is to determine its allocation rate [McLach-
lan, 1992]. For convenience, let Xt represent the
training set, i.e., Xt {(X1,44),-.., Xn, Atn)}-
The allocation rate, e;;, for a given classification rule,
n(X, Xr), is simply the probability that a randomly
chosen scene (with feature vector X) belonging to C; is
allocated to C, that is,

eij (n) =pr {n(X,Xr) = C;|X € C;}. (19)

As in so many situations, the only data available to
test the classifier are the data at hand (i.e., the train-
ing set X1), and they usually do not contain all of the
possible situations. Most procedures used to estimate
the allocation rates give rise to estimates that are bi-
ased with respect to the true allocation rates, as well
as having large variances (for a review, see Toussaint
[1974]). In recent years, however, bootstrap estimates
[Efron, 1979] have gained widespread acceptance as the
standard for allocation rate estimation because of their
small variance and reduced bias (a very good introduc-
tion to bootstrap methods is given by Efron and Tib-
shirani [1986]). The so-called EO bootstrap estimator
[Jain et al., 1987] is used in this study, as it is partic-
ularly appropriate for estimating the allocation rate of
nearest neighbor classifiers. A total of 200 bootstrap
samples is used in the EO estimate, in accordance with
Efron [1983].

5.5. Optimizing the Feature Vector

It has been well documented that too many features
in a feature vector can result in a poor classifier [e.g.,
McLachlan, 1992]. For this reason, feature selection
procedures are usually carried out in order to optimize
the performance of a classifier. We make use of an error
rate-based procedure. This involves choosing the set of
features that minimizes e(n), the sum of e;;(n),i # j.
Typically, as in our case, the initial number of features
is large enough to prohibit the testing of all possible
combinations of feature vectors, because the computa-
tional load is too great. To reduce the computational
load, we use the following procedure: each of the 14
features alone can be considered as 14 one-dimensional
(1-D) feature vectors. Each 1-D vector is used in the
calculation of e(n). Let Ty, be the feature that has the
minimum e(n). The remaining features are then com-
bined with &, to form 13 2-D feature vectors. Each of
these 2-D vectors is used in the calculation of e(n). The
feature vector that has the minimum e(n) is retained
and combined with the remaining 12 features to form
12 three-dimensional feature vectors. This procedure is
continued until we have built up a fourteen-dimensional
feature vector, whose feature entries are ranked in order
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of importance. The optimum feature vector contains
the first m features, where m satisfies {EO,,}_.

Because the EO bootstrap estimator of e(n) has some
variance associated with it (i.e., each EO realization is
not exactly the same), it is possible for a different rank
and a different optimum feature vector to be selected by
the selection procedure. For this reason, the selection
procedure was carried out 10 times using the simulated
and AVHRR training sets. The optimum feature vec-
tor that stood out was six-dimensional and, in order of
preference, equal to (VAR(;), Ac(7:), Aedge(ri), M1 (73),
MEAN(r;), ENT(r;)), where VAR, MEAN, and ENT
are the GLDS variance, mean, and entropy, respec-
tively, and M is the first moment invariant. The first
two features reduce the error rates substantially, with
only a small improvement with the addition of the last
four. Note, the most important feature is not A.(r;) but
VAR(r;). This tells us that if we had to use a single fea-
ture to estimate A;, we would do better using VAR(r;)
rather than A.(r;). Also, the information at the de-
graded scale r;_ is not required, thereby substantially
reducing the computational load. The optimum feature
vector is used in the next section to estimate A, for the
two training sets.

5.6. Results

Figures 6 and 7 show the allocation rates, as de-
fined in (19), for A., A;7 and A, for the simulated
and AVHRR training sets, respectively. Although the
calculations, and those that follow, are performed using
cloud fraction classification, we have converted them to
cloud fraction (percent) for the reader’s convenience.
The percentage cloud fractions that are reported repre-
sent the lower bound of the cloud fraction classes. Note
the absence of data in Figure 7 for A; < 15%; this is
consistent with Figure 5. As expected, a strong bias for
A, to overestimate A; exists for both training sets. (We
also note that the results of A, presented in Figures 6a
and 7a are reminiscent of those in Figure 7a of Chang
and Coakley [1993]. The differences are likely due to
our assumption of perfect cloud detection). The results
are slightly improved for A;7; however, A7 also always
equals or overestimates A;. The allocation rates for A,
are scattered about the diagonal of the figure, with the
highest allocation rates clustering near the diagonal of
the figure.

For the three estimators, the bias and variance are a
function of A;. We define the average bias in the cloud
fraction class estimate for a given A; as

19
B8 (Au') = Z (Aj - Ati)eij (20)
j=1
and the variance as
19
02 (Ay) = Z [4j — Aui — B (Au)]? €5, (21)

Jj=1
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Figure 6. Allocation rates, as defined by (19), for (a)
A., (b) Ay, and (c) A, derived from the simulated
training set. The axes are converted to percentage cloud
fraction.

where A; is the cloud fraction class estimate given by
either A., Ay7, or A,, and i € {1,...,19}.

Figures 8 and 9 show the bias and standard deviation
(o) in the cloud fraction estimates for the simulated
and AVHRR training sets, respectively. The bias in A,
peaks at an A; = 25%, with a bias of 46% in cloud
fraction for the simulated cloud fields and 63% for the
AVHRR training set. Thus cloud fields having a true
cloud fraction of 25% tend to give rise to the largest
bias in A.. The bias in A7 peaks at an A; = 35%,
with a bias of 30% in cloud fraction for the simulated
training set and 53% for the AVHRR data set. The bias
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in A, peaks at an A; = 95%, with a bias of -9% in cloud
fraction for the simulated training set and -14% for the
AVHRR training set.

The behavior in bias for A, and A;7 helps to explain
some of the behavior in their variance. First, the bias
and variance equals zero when A; = 95% cloud fraction
for both training sets. This is expected since A; = 95%
is the largest cloud fraction bin and these cloud fraction
estimators always equal or overestimate A;. Second,
since the estimators always equal or overestimate A,
the average variance is smaller for A, as compared to
A;7 because the overall bias is larger for A, than it is
for Aj7. This also explains the lower variances observed
for the AVHRR training set.

5 15 25 35 45 55 65 75 85 95

(0)

17

[ D LR S
35 45 55 65 75 85 95

(c)
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Figure 7. Same as Figure 6, except for the AVHRR
training set.
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As for Ap, the lowest variances tend to be with the
smaller A; classes, indicating that cloud pattern infor-
mation is well characterized at small values of A;. The
variability is largest for an A; of about 25% to 85%. In
this region, a lot of overlap in cloud pattern information
can exist. This is because the cloud pattern information
has been derived at the scale of the coarse resolution
measurements and not at the true cloud scale. As a
result, cloud fields having a true cloud class of 25% can
appear in the coarse resolution measurements as hav-
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Figure 8. (a) The bias and (b) the standard deviation
in A., Ay7, and A, for the allocation rates defined by
(19) applied to the simulated training set and converted
to percentage cloud fraction.
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Figure 9. Same as Figure 8, except for the AVHRR
training set.

ing much larger cloud fractions (which is where the peak
bias in A, occurs) and cloud patterns resembling those
of larger true cloud fractions. Moreover, the variabil-
ity in cloud pattern information is reduced as A, gets
larger. The overall average bias and standard deviation
for the three estimators derived from the two training
sets is tabulated in Table 1.

‘We have thus far examined the behavior of the three
cloud fraction estimators as they depend on the true
cloud fraction, A;. However, from a remote sensing
point of view, we do not know A;. To study the errors
in our cloud fraction retrievals, the allocation rate from
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Table 1. Overall Average Bias and Standard Devia-
tion of A., Aj7, and Ap, Computed From the Alloca-
tion Rates Defined by (19) and Converted to Percentage
Cloud Fraction

Simulated AVHRR
Estimators Training Set Training Set
B o B g
A. 31.9 114 35.1 3.3
A7 22.2 11.9 31.3 4.5
0.4 11.9 0.5 12.1
{2)
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Figure 10. Allocation rates, as defined by (22), for the
estimators (a) Ae, (b) A7, and (c) Ap derived from the
simulated training set.

DI GIROLAMO AND DAVIES: CLOUD FRACTION ERRORS

(a)

55
Al 1 w

5 15 25 35 45 55 65 75 $5 95

(b)

©

1 ) T Y T T
5 15 25 35 45 55 65 75 85 95
Estimated Classification

Figure 11. Same as Figure 10, except for the AVHRR
training set.

a remote sensing point of view needs to be computed.
This is simply the probability that a randomly chosen
scene (with feature vector X) having an estimate C;
belongs to the true class, Cj, that is,
eij(n) =pr{XeC;n(X,X)=Ci} (22
Figures 10 and 11 show the allocation rates, as de-
fined in (22), for Ae, A17 and A, for the two training
sets. These results are consistent with the behavior of
the allocation rates of Figures 6 and 7: true cloud frac-
tions will always be equal to or lie below the estimates
given by A, and A;7, and they will cluster about the
diagonal given cloud fraction estimates from A,.
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Figure 12. Same as Figure 8, except for the allocation
rates defined by (22).

Figures 12 and 13 show the bias and standard devi-
ation in the true cloud fractions as they depend on the
estimators cloud fraction classification for the simulated
and AVHRR training sets, respectively. Note the lack
of data below A, = 55% and A;7 = 45% in Figure 13.
This is simply due to the lack of estimates below these
values for the AVHRR training set. Similarly, there are
very few A, and Ay estimates below a class estimate
of 90% for the AVHRR training set; therefore the bias
and standard deviation estimates should be interpreted
with caution. The bias for the A, estimator peaks at
A. = 85%, with a value of -44% in cloud fraction for
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the simulated training set, and A, = 75% with a value
of -51% in cloud fraction for the AVHRR training set.

Thus, given A, estimates of cloud fraction between 75
and 90%, the true cloud fraction will lie on average 44
— 51% below the estimate. The results improve slightly
101' ﬂl'] I‘OI' ﬂp, l:ﬂe Dlas ﬁtlmanfs are mu(:n I.OWBI' Dﬂ&ﬂ
A, and A;7 except for the case A;7 = 5% with the sim-
ulated data (note that no A, = 5% data exist). The
variance is lowest when the estimator classification is
low for all three estimators; this is where the biases are
also low. Thus, given a low estimate of cloud fraction
from either of the three estimators, we can assume the

estimate to be good. The overall average bias and stan-

20 T T T T T T T T

a)
10 | X, .

Bias
o
(=)

T
1

-40 |

20 T T

- - 0= -

Standard Deviation

5 15 25

Estimated Cloud Fraction

Figure 13. Same as Figure 9, except for the allocation
rates defined by equation (22).



1752

dard deviation for the three estimators derived from the
two training sets is tabulated in Table 2.

Overall, the results are slightly better for the sim-
ulated training set compared to the AVHRR training
set. Moreover, Figures 8, 9, 12, and 13 show the re-
sults for the AVHRR training set to be more “noisy”
than those for the simulated training set. This may be
due to the richer variety of cloud patterns that exist
in nature, especially when one considers multilayered
systems, and/or to the smaller amount of data used
in the AVHRR training set as compared to the simu-
lated training set. Regardless of the small differences
that exist between the two training sets, the results
clearly demonstrate that a pattern recognition approach
in estimating A; is for the most part significantly bet-
ter than simply using the standard method or the cor-
rection method of (17). Moreover, even though A;7
did produce better results than A., the fact that the
Aj7 results are still poor suggests that we are applying
(17) to situations where the equation is no longer valid.
Therefore from the derivation of (17), we can conclude
that most of the coarse resolution cloud scenes used in
this section had many cloud interior pixels that were
partially cloudy.

Finally, we have presented results for the case when
r¢/r; = 1/32, which is a reasonable ratio to consider
for present-day observations (e.g., Landsat/AVHRR).
For different ratios, different quantitative results are ob-
tained; however, the results remain qualitatively consis-
tent, and better results are obtained for all three esti-
mators as 7¢/r; gets larger. This remains true up to
r; = ry, where all three estimators give the correct A,.
This is clearly the case for A, and A;7, as expected
from section 4. It is also true for A, since optimizing
the feature vector at this resolution results in a 1-D op-
timum feature vector whose entry is equal to A.. At the
other extreme, when r; = 79, all training scenes appear
100% cloudy. Given A, the overall average bias for A,
and A;7 is 45% with a standard error of 0%. For A,
the choice of A, is random (as expected from the near-
est neighbor classification rule); therefore, the overall
average bias is 0% with a standard error of 27%.

6. Summary and Conclusions

The standard method in deriving cloud fraction is to
compute the fraction of total image pixels that con-
tains some cloud. We have examined the errors as-
sociated with this method due to the effects of finite
measurement resolution. The concept of perfect cloud
detection was employed in order to isolate resolution ef-
fects from threshold and cloud definition effects, as did
SS72. We have revisited the paper cloud experiment
of SS72 and demonstrated that their results are not
unique for uniformly distributed clouds. This conclu-
sion was further supported on theoretical grounds that
dismiss the assumptions made in SS72 which state that
the standard method estimate, A, of cloud fraction de-
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Table 2. Overall Average Bias and Standard Devia-
tion of A., A17, and Ap, Computed From the Alloca-
tion Rates Defined by (22) and Converted to Percentage
Cloud Fraction

Simulated AVHRR
Estimators Training Set Training Set
B G B G
A, -27.6 10.6 -40.5 9.3
A7 -19.8 10.1 -34.4 8.1
A, -0.5 12.0 1.2 12.3

pends only on the true cloud fraction, A;, and the ratio
of the average cloud size to pixel size (see (1)).

To understand the uncertainties in using A, as the
estimate for A;, we have derived the upper and lower
limits of A: given A, over a general cloud field under
the assumption of perfect detection. The derivation is
general and shows A. to be the upper bound on A,
while the lower bound is essentially zero for measure-
ments having resolutions typical of current meteorolog-
ical satellites (> 1 km) and for a reasonably small de-
fined true cloud scale [see (11)]. Further assumptions
were used to significantly reduce the bounds on A; and
to obtain an exact relationship (see (17)); however, the
assumptions all become questionable for coarse resolu-
tion measurements. This is principally due to partially
cloud-covered pixels being observed as cloud interior
pixels rather than cloud edge pixels within coarse reso-
lution imagery (see Lemma 2). Although we have not
examined radiance-based methods to estimate subpixel
cloud fraction in this study, we note that the statistical
approach by Molnar and Coakley [1985], which uses an
empirical relationship similar to (17), shows promising
results.

We have also demonstrated that a pattern recognition
estimate, Ap, can be used as-an estimate of A;. Com-
parisons were made between A,, A., and the estimate
from (17), Aiz, as estimates for A;. Overall, A, leads
to nearly unbiased estimates of A:, unlike A, and A;7,
leaving us with unbiased estimates of global cloudiness
if such an approach were adapted using perfect cloud
detectors. Of course, an appropriate training set for
the estimate A, is required. The two training sets we
have used are for demonstration purposes only.

Applying the findings of this study to present satel-
lite data will be difficult given that perfect cloud detec-
tion does not yet exist. Any real application requires
us to consider the effect of thresholds. True errors are
difficult to assess due to the interdependence of resolu-
tion and threshold, and the lack of a precise quantita-
tive definition of what constitutes a cloud. Once these
issues are resolved, further efforts at measuring cloud
fraction using the information within the measured ra-
diances may be pursued. This includes using the radi-
ances rather than the binary image to characterize the
image pattern.
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As a final note, much of what has been presented in
this study can apply to the fractional area coverage of
many geophysical parameters (e.g., vegetation, ice, ice
leads, etc.). However, caution should still be observed
in defining the relevant geophysical parameter and in
deriving an appropriate training set for a pattern recog-
nition approach.

Appendix A: Derivation of (18)

In this appendix we transform (17) into the form of
(1) for a regular array of circular clouds all having the
same size. We begin by rewriting (17) as

Ae (r:) = 2A¢ — Aine (i) — (ﬁ)2 Acage (i) . (A1)

Ti

Let n1q be the total number of circular clouds in our
scene. We assume that an image pixel does not contain
partial coverage by more than one cloud, which may
cause cloud edge pixels to be observed as cloud interior
pixels, as depicted in Figure 2. With this assumption,
Acdge(ri) and Ajne(r;) are given by

Acdge (1i) = 2TNaq (1i) 72001 (A2)

Aint (T'i) = T Nad (Ti)2 ’l‘? Ned — 27rnrad (Ti) 1"? Necld (A3)

where 704 (7;) is the number of pixels that make up the
cloud radius at a scale r;, with

(A4)

Ae (i) = Tgaa (1‘,‘)2 2N .

Substituting (A2) and (A3) into (Al) yields

Ae (7‘,‘) = 2At — TNrad (1‘,;)2 r?ncld

+ 27 Nad (73) Neld (7}2 - 7‘? ) . (45)

R is defined as the ratio of the true average area of
a cloudy element (A;/nca in this example) to the pixel
area (r; X 1;), that is,

A
R 4t

. MNecld ’I‘,?

(46)

Combining (A6) with (A4), we can rearrange the terms

to give
RA, (i) \2
Nyad (T3) = (——-——) .

A, (A7)

Substituting (A6) and (A7) into (AS5) yields

1 1
A /2 R /2 1
Ae (ri) = Ac+ e} - NelaTs (L> Ae (rs) /2-
R At

(48)
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Equation (A8) is quadratic in A, (r;)!/2, the solution of
which gives (18) in section 4.

Appendix B: Limitations of (18)

Here we derive the cutoff value for R in which (18) is
no longer valid for a regular array of circular clouds all
of the same size. The validity of (18) breaks when par-
tially cloud covered pixels are observed as cloud interior
pixels rather than cloud edge pixels (see Figure 2). This
can occur when the pixel size is greater than the mini-
mum distance between the edges of neighboring clouds.
The true distance, D., between nearest neighbor cloud
centers is given by

1
1\ %
D, = ( 2)
Neld T

and the minimum distance between the edges of neigh-
boring clouds (corresponding to 7, in section 4) is given
by

(B1)

_ Dc - 2nrad (Tt)
o= ————2,
2
Then with (B1), (B2), (A6), and (A7), the condition
r; > 7 given in section 4 transforms to

[At

(B2)

R< (B3)

D=

- @)

Equation (B3) describes the region for which (18) is no
longer valid due to the limitations of the assumption
that only cloud edge pixels can be partially cloudy.

Appendix C: The AVHRR Cloud Mask
Algorithm

In this appendix we describe the cloud mask that was
used to extract one of the training sets from the AVHRR
data. The data come from the AVHRR instrument
flown aboard the NOAA 11 spacecraft. The instru-
ment has five spectral channels centered at about 0.67,
0.86, 3.7, 11, and 12 pm, which are labeled channels 1
through 5, respectively. The channel 1 and 2 counts are
converted to reflectances (R; and Ry, respectively) us-
ing the calibration coefficients shown in Table Cla [P.
M. Teillet, personal communication, 1995] with their
meanings described by Teillet and Holben [1994]. The
channel 4 and 5 counts are converted to brightness tem-
peratures (T4 and T, respectively) using the procedure
described by Wooster et al. [1995]. Nonlinearity cor-
rections in calibrating the infrared channels are followed
using the procedure described by Weinreb et al. [1990].

The cloud mask algorithm that we employed is de-
picted in Figure C1. The list of observables employed
by the cloud mask, the references that describe their
rationale, and the thresholds are shown in Table Clb.
The OWE14 data set [NOAA-EPA Global Ecosystems
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Table Cla. Calibration Coefficients for AVHRR Channels 1 and 2

Gain Offset
Channel Slope Intercept Slope Intercept
1 2.783 x 1078 1.654 3.832 x 104 39.26
2 —4.630 x 10~° 2.534 8.914 x 1074 38.28

Table C1b. Cloud Detection Observables, Description, and Thresholds Used by the Algorithm Depicted
in Figure C1
Observable Threshold Description
R Ry =0.6 gross reflectance test to filter out very bright clouds
R: PCST® see Di Girolamo and Davies [1995]
D? D, =19 see Di Girolamo and Davies [1995]
DSvI® DSVI, = 0.004 see Di Girolamo and Davies [1994]
Ts Ts: = 250K gross brightness temperature test to filter out very high, cold clouds
a? oy = 05K see Saunders and Kriebel [1988]
Ta—Ts at see Saunders and Kriebel [1988]

s PCST (predetermined clear sky threshold) is a function of the Sun view geometry.

® D = |NDVI|*/R}, where NDVI = (R; — R1)/(Rz + Ry) and b is chosen to maximize the separation between
clear and cloudy D values. A constant b value of 0.6 was used in our study since all land classes were predominantly

vegetation covered.

¢ DSV is the spatial variability index of D, defined as the absolute difference between D and the mean value of

its surrounding 3 x 3 matrix.
4 Variable o is the standard deviation of Tj.
¢ Ty is a function of Ty and the view angle.

Input Data

no
flag pixel as cloud
o

<&

sunglint
?

flag pixel as clear

‘=[]flag pixel as cIoud]-—J

The cloud detection algorithm employed

Figure C1.
in our study.

Database Project, 1992] was used to classify the pixels
as ocean, land or coastal (coastal being a pixel that has
land and ocean amongst its eight neighboring pixels).
Of the 370 scenes that were extracted, approximately
93% of the total pixels were classified as ocean. Also,
all land pixels were classified as having vegetation cover.
With this in mind, we simply used constant thresholds
for the observables D and DSVI, since small errors in
cloud detection are not important in our study. How-
ever, all thresholds employed by the cloud mask lean
toward being clear sky conservative.

Acknowledgments. Partial support from the Jet Pro-
pulsion Laboratory of the California Institute of Technol-
ogy under contract 959085 and from the Natural Sciences
and Engineering Research Council of Canada is gratefully
acknowledged. The AVHRR data used in this study were
provided by the U. S. Geological Survey EROS Data Cen-
ter DAAC. We thank Jeff Eidenshink and Eugene Clothiaux
for the timely and efficient manner in which the data were
distributed. Thanks are also extended to Bryan Baum and
Lazaros Oreopoulos for the AVHRR unpacking code, Phil
Teillet for the AVHRR calibration coefficient, and Tamads
Varnai for his cloud model code.

References

Arakawa, A., Modeling clouds and cloud processes for use
in cloud models, GARP Publ. Ser., 16, 183-197, 1975.
Arking, A., The radiative effects of clouds and their impact
on climate, Bull. Am. Meteorol. Soc., 72, 795-814, 1991.



DI GIROLAMO AND DAVIES: CLOUD FRACTION ERRORS

Arking, A., and J. D. Childs, Retrieval of cloud cover param-
eters from multispectral satellite measurements, J. Clim.
Appl. Meteorol., 24, 322-333, 1985.

Baraldi, A., and F. Parmiggiani, An investigation of the
textural characteristics associated with gray level cooccur-
rence matrix statistical parameters, IEEE Trans. Geosci.
Remote Sens., 33, 293-304, 1995.

Barker, H. W., and J. A. Davies, Solar radiative fluxes for
stochastic, scale-invariant broken cloud fields, J. Atmos.
Sci., 49, 1115-1126, 1992.

Cess, R. D., et al., Intercomparison and interpretation of cli-
mate feedback processes in 19 atmospheric general circu-
lation models, J. Geophys. Res., 95, 16,601-16,615, 1990.

Chang, F.-L., and J. A. Coakley, Estimating errors in frac-
tional cloud cover obtained with infrared threshold meth-
ods, J. Geophys. Res., 98, 8825-8839, 1993.

Chen, D. W., S. K. Sengupta, and R. W. Welch, Cloud
field classification based upon high spatial resolution tex-
tural features, 2, Simplified vector approaches, J. Geo-
phys. Res., 94, 14,749-14,765, 1989.

Coakley, J. A., and F. P. Bretherton, Cloud cover from high-
resolution scanner data: Detecting and allowing for par-
tially filled fields of view, J. Geophys. Res., 87, 4917-4932,
1982.

Di Girolamo, L., On the detection of cirrus clouds from satel-
lite measurements, M. Sc. thesis, McGill Univ., Montréal,
Qué., 1992.

Di Girolamo, L., and R. Davies, Optimizing the use of 0.67
pm and 0.86 pum radiometric data for cloud detection,
paper presented at 8th Conference on Atmospheric Ra-
diation, pp. 466-467, Amer. Meteorol. Soc., Nashville,
Tenn., Jan. 23-28, 1994.

Di Girolamo, L., and R. Davies, The image navigation
cloud mask for the Multi-angle Imaging SpectroRadiome-
ter (MISR), J. Atmos. Oceanic Technol., 12, 1215-1228,
1995.

Dudani, S. A., K. J. Breeding, and R. B. McGhee, Aircraft
identification by moment invariants, IEEE Trans. Com-
put., C-26, 39-46, 1977.

Efron, B., Bootstrap methods: Another look at the jack-
knife, Ann. Stat., 7, 1-26, 1979.

Efron, B., Estimating the error rate of a prediction rule:
Improvement on cross-validation, J. Am. Stat. Assoc., 78,
316-331, 1983.

Efron, B., and R. Tibshirani, Bootstrap methods for stan-
dard errors, confidence intervals, and other measures of
statistical accuracy (with discussion), Stat. Sci., 1, 54—
77, 1986.

Falls, L. W., The Beta distribution: A statistical model for
world cloud cover, J. Geophys. Res., 79, 1261-1264, 1974.

Frouin, R., C. Gautier, and J. J. Morcrette, Downward long-
wave irradiance at the ocean surface from satellite data:
Methodology and in situ validation, J. Geophys. Res., 93,
507-619, 1988.

Goodman, A. H., and A. Henderson-Sellers, Cloud detection
analysis: A review of recent progress, Atmos. Res., 21,

203-228, 1988,

Gu, Z. Q., C. N. Duncan, E. Renshaw, M. A. Mufflestone,
C. F. N. Cowan, and P. M. Grant, Comparison of tech-
niques for measuring cloud texture in remotely sensed
satellite meteorological image data, IEE Proc., 136, 236~
248, 1989.

Haralick, R. M., Statistical and structural approaches to
texture, Proc. IEEE, 67, 786-804, 1979.

Haralick, R. M., and L. G. Shapiro, Glossary of computer
vision terms, Pattern Recognit., 24, 69-93, 1991.

Harshvardhan, The effect of brokenness on cloud-climate
sensitivity, J. Atmos. Sci., 39, 1853-1861, 1982.

Henderson-Sellers, A., and K. McGuffie, Are cloud amounts

1755

estimated from satellite sensor and conventional surface-
based observations related?, Int. J. Remote Sens., 11,
543-550, 1990.

Hu, M. K., Pattern recognition by moment invariants, Proc.
IRE, 49, 1428, 1961.

Hu, M. K., Visual pattern recognition by moment invariants,
IEEE Trans. Inf. Theory, IT-8, 179-187, 1962.

Hughes, N. A., Global cloud climatologies: A historical re-
view, J. Clim. Appl. Meteorol., 28, 724-751, 1984.

Jain, A. K., R. C. Dubes, and C.-C. Chen, Bootstrap tech-
niques for error estimation, IEEE Trans. Pattern Anal.
Mach. Intel., PAMI-9, 628-633, 1987.

Key, J. R., The area coverage of geophysical fields as a func-
tion of sensor field-of-view, Remote Sens. Environ., 48,
339-346, 1994.

Kobayashi, T., Parameterization of reflectivity for broken
cloud field, J. Atmos. Sci., 45, 3034-3045, 1988.

Loeb, N. G., T. Vérnai, and R. Davies, The effects of cloud
inhomogeneities on the solar zenith angle dependence of
nadir reflectance, J. Geophys. Res., in press, 1996.

London, J., A study of the atmospheric heat balance, Final
Rep. AFC-TR-57-287, OTSB129551, College of Eng., N.
Y. Univ., 99 pp., 1957.

Lovejoy, S., D. Schertzer, and A. A. Tsonis, Functional
box counting and multiple elliptical dimensions in rain,
Science, 285, 1036-1038, 1987.

McLachlan, G. F., Discriminant Analysis and Statistical
Pattern Recognition, 526 pp., John Wiley, New York,
1992.

Molnar, G., and J. A. Coakley, The retrieval of cloud cover
from satellite imagery data: A statistical approach, J.
Geophys. Res., 90, 12,960-12,970, 1985.

NOAA-EPA Global Ecosystems Database Project, Global
Ecosystems Database Version 1.0, User’s Guide: Docu-
mentation, Reprints, and Digital Data on CD-ROM. US
DOC/NOAA National Geophys. Data Cent., Boulder,
Colo., 1992.

Raffy, M., Remotely-sensed quantification of covered areas
and spatial resolution, Int. J. Remote Sens., 14, 135-160,
1993.

Rossow, W. B., et al., ISCCP cloud algorithm intercompar-
ison, J. Clim. Appl. Meteorol., 24, 877-903, 1985.

Rossow, W. B., Measuring cloud properties from space: A
review, J. Clim., 2, 201-213, 1989.

Rossow, W. B., and R. A. Schiffer, ISCCP cloud data prod-
ucts, Bull. Am. Meteorol. Soc., 72, 2-20, 1991.

Saunders, R. W., and K. T. Kriebel, An improved method
for detecting clear sky and cloudy radiances from AVHRR
data, Int. J. Remote Sens., 9, 123-150, 1988.

Schiffer, R. A., and W. B. Rossow, The International Satel-
lite Cloud Climatology Project (ISCCP): The first project
of the World Climate Research Program, Bull. Am. Me-
teorol. Soc., 64, 779-784, 1983.

Shenk, W. E., and V. V. Salomonson, A simulation study
exploring the effects of sensor spatial resolution on esti-
mates of cloud cover from satellites, J. Appl. Meteorol.,
11, 214-220, 1972.

Simpson, M. L., R. L. Schmoyer, and M. A. Hunt, Moment
invariants for automated inspection of printed material,
Opt. Eng., 80, 424-430, 1991.

Stowe, L. L., C. G. Wellemeyer, T. F. Eck, and H. Y. M.
Yeh, Nimbus-7 global cloud climatology, 1, Algorithm and
validation, J. Clim., 1, 445-470, 1988.

Teague, M. R., Image analysis via the general theory of mo-
ments, J. Opt. Soc. Am., 70, 920-930, 1980.

Teillet, P. M., and B. N. Holben, Towards operational ra-
diometric calibration of NOAA AVHRR imagery in the
visible and near-infrared channels, Can. J. Remote Sens.,
20, 1-10, 1994.



sclassifi-
S

ligera on ation of mi
11Cg 2l 11sCiassiit

1 estim
cation, IEEE Tmns nf. Theory, IT 20 72-479, 1974.
Vérnai, T., Reflection of solar radiation by inhomogeneous
clouds, ?h.D. thesis, McGill Univ., Montréal, Qué., 1996.
Weinreb, M. P., G. Hamilton, S. Brown, and R. J. Koczor,
Nonlinearity corrections in calibration of Advanced Very
High Resolution Radiometer infrared channels, J. Geo-
phys. Res., 95, 7381-7388, 1990.
Weich, R. M., and B. A. Wielicki, Reflected fluxes for bro-
ken clouds over a Lambertian surface, J. Atmos. Sci., 46,

1384-1395 1989.

A9/ D
vvcicil,

fect of spatial resolution upon texture-based cloud field

classification, J. Geophys. Res., 94, 14,767-14,781, 1989.
Welch, R. M., S. K. Sengupta, and D. W. Chen, Cloud field

classification based upon high spatial resolution textural

features: 1
Ieatures:

Geophys. Res., 93, 12,663-12,681, 1988.
Weszka, J. S., C. R. Dyer, and A. Rosenfeld, A comparative

M oMoa N 4Q K Q- Mha of
.l.\a AVi. ) ivi. . L‘va’ Qllll . Ax. Ucllsuylldl, -I.IIC er

Grav level co-occurrence matrix apprnar‘h ’

i. FTAY €vVel CO-0Ccurrence matlix a roach, J

measures for terrain classification

€ INCASUIEE 0T Lerraln C:assiilcation,

Trans. Syst. Man Cybern., SMC-6, 269-285, 1976.

Wielicki, B. A., and L. Parker, On the determlnatlon of
cloud cover trom satellite sensors: The effect of sensor
resolution, J. Geophys. Res., 97, 12,799-12,823, 1992.

Wielicki, B. A., and R. M. Welch, Cumulus cloud proper-
ties derived using Landsat satellite data, J. Clim. Appl.
Meteorol., 25, 261-276, 1986.

Wooster, M. J., T. S. Richards, and K. Kidwell, NOAA-11
AVHRR/2 - thermal channel calibration update Int. J.
Remote Sens., 16, 359-363, 1995.

study of textur

IEEE

R. Davies and L. Di Girolamo, Institute of Atmospheric
Physics, The University of Arizona, 1118 E. Fourth St., Rm.
542, P. O. Box 210081, Tucson, AZ 85721-0081. (e-mail:
davies@air.atmo.arizona.edu; larry@air.atmo.arizona.edu )

(Received March 21, 1996; revised August 8, 1996;
accepted August 8, 1996.)



